KineticSystems Company, LL.C

VISA Application Programming
Interface

(C) 2005
Copyright by
KineticSystems Company, LLC
Lockport, Illinois
All rights reserved

February 25, 2005

KineticSystems VISA
Application Programming Interface

KineticSystems VISA

© Copyright 2005 KineticSystems Company, LLC. All rights reserved.

KineticSystems Company, LLC makes no representations that the use of its products in manner described
in this publication will not infringe on existing or future patent rights, nor do the descriptions contained in
this publication imply the granting of license to make, use, or sell equipment or software in accordance
with the description.

No part of this publication may be reproduced, transmitted, or stored in any form, or by any means without
the written permission of KineticSystems Company.

Technical specifications contained within this publication are subject to change without notice.

Reference to dbgview software is made only as a courtesy, and is not meant to imply an endorsement of any
3" party software provider.

KineticSystems VISA

Table Of Contents

1

2

3

3.1
3.2

VISA LIBIAIY ..ttt ettt et en et sttt st se s s es e e eeeneses s s s eeeenens e 1
1.1 VISA OVEIVIEW woveiiiitiieeeiiece ettt vttt e e en e e s et e es s s e e e e s e e e 1
1.2 INSTALLATION ..ottt ettt ettt et e e s et e s e e et e e e e e 1

SOftWare COMPONENLS...........oooiiriirieieteiireiei ettt ettt ee ettt s et e s s esseeeeeeseseesesessereses 2
2.1 Resman — RESOUICE MAMAZETceveviiiiieiiiieeteeicteese ettt es e ee e e e e enesens 2
2.2 VISA LibTary ROULMEScviveveuiiiieieisteeeecs ettt oot es s e e te s s sn s seesesessns 3

2221 VICIOSE ettt et ee et ettt e ettt ee e e 4

2.2.2 VIDISADIBEVENL. ..ottt et e e e e s et er e et 5

2.2.3 VIDISCAIAEVENES ..ttt e e et e e e e s e e et es e e 6

2. 2.4 VIENDICEVEIL....cviiviiiceietececeeee ettt ee e e et e e e e e oo r et et 7

2.2.5 VIEVENTHANAIETcoviviiiiitiiiiicticeiecce et e ettt ees et e e s e ee e e e e s e ee e 9

2.2.0 VIFINANEXE «...voitieeite e eeeeen ettt et ee e e e e e e e e e en e e ee oo, 10

227 VIFINARSIC 1ottt ettt e et et e e e e e e 11

228 VIGEEAIIIDULEoveeeevee ettt ettt et e e s e s e e e e en et 15

2.2.9 VIINB/VIINTO/VIINGZ c...ooereeeeeee et e e e ee e e 16

2.2.10 VIINSTAIHARAIET ..ot et eees e e e e e, 18

2211 VIMAPAAIESS ...ttt st ettt e e e e re e 19

2.2.12 viMoveIn8/VIMOVEINT 6/VIMOVEINSZ2eeeee oo et eeeeee oo eeeeee e e 20

2.2.13 viMoveOut8/vIMoveQUL1 6/VIMOVEOUL3Zoovieeeeeeeee oot 22

2214 VIOPEIL ..ottt ettt £t en ettt ee e e et 24

2.2.15 viOpenDefaultRMcc.cccovneeniiennnne. et eb e r et bt b et e et b ettt e ee et e s e enr et nes 26

2.2.16 VIOULS/VIOULTO/VIOUL3 2 ... et en e 27

2207 VIREAG ..ottt ettt et et e e e e et e e e et e s e ee e et 29

2218 VISEEATIIIDULE . ..ottt et e e e ee e e r e ee e ee e e oo e 30

2.2.19 VISEAUSIIESC ...evieeiiritieetieeeeeee ettt et et e e e e e et s e e e e n e ee e 31

2.2.20 viUnInStalIHANAIETo.ooviiic et 32

2.2.21 VIUNMAPAATESS ...ttt es et s s s e et e en e 33

2.2.22 VIWAONEVENL ..ottt ettt ee e ee e e ee et e e e e ee e er e et 34

2223 VIWTIEE ettt et et e ee e ettt 36

KineticSystems VISA Special FEatUrEs.ccooviieuriiiiieiieiis ittt et ere e enerensenn 37

DEDUZZING ..ottt ettt et e e e en et e e erens 37
Services Directly offered via VISA PIUZ-I0Soviviiiiiiiiriee oo oo 38

i

KineticSystems VISA VISA Library

1 VISA Library

VISA (Virtual Instrument Software Architecture) provides an industry wide common I/O library API
(Application Programming Interface) which is interoperable with a wide variety of instruments. Originally
conceived for VXIbus applications, VISA has evolved into a specification that supports a wide variety of
instrument platforms, including CompactPCI, TCP/IP and GPIB. KineticSystems VISA provides full
software integration among instruments manufactured by KineticSystems and other vendors.

1.1 VISA Overview

This software package consists of two entities: a visa32 shared library that provides the management and
I/O services described in the VISA specification, and a resource manager (resman) which queries the
system and identifies the instruments present, and coordinates shared resources (such as device identifiers
and memory spaces) among them. In addition, a user will require 1 or more KineticSystems VISA Plug-in
packages. KineticSystems VISA supports a wide variety of instrument platforms including VXI,
CompactPCI and TCP/IP; each platform has its own Plug-in package that provides platform-specific
services for VISA. The VISA package is normally bundled with the appropriate Plug-in when an
instrument is purchased from KineticSystems. Please see http://www.kscorp.com for the latest availability
of the VISA package and associated Plug-ins.

1.2 Installation

The VISA package must be installed first, before any Plug-ins. If this is an upgrade of VISA,
KineticSystems recommends that any previous Plug-ins and VISA layer be uninstalled before proceeding.

Insert the disk labled ‘KineticSystems VISA’ into a CD drive and run setup.exe; the setup script will guide
you through the process of installation.

Consult the documentation that accompanied the hardware device or instrument for any special instructions
regarding the installation of the VISA Plug-in.

KineticSystems VISA VISA Library
2 Software Components

2.1 Resman - Resource Manager

After a system has first powered up, it is not operable until the VISA Resource manager (resman.exe) has
run. Resman performs a number of instrument platform specific operations to probe the various
components present. The results are recorded in the resource manager table, resman.tbl, by default located
in the ResmanTables directory under the vxipnp installation directory. Because resman also writes out
information to the various instruments themselves, it is very important that resman be run after any chassis
or component of the system is power cycled.

Resman can be run either from the (Windows platform only) ‘Start’ button (sun—sKineticsystems Visa-—sResman—sResman),
or from the command line. Resman offers a number of command line options which are only available if
run from the command line:

-v, =——-verbose
produce detailed output

-gq, —--quiet
produce no output

--nopause
do not wait for keystroke to end

-d, —-directory=path
specify the resman directory

-1, =--log
output results to logfile (pesmanlog)

-—version
print version

-h, --help
print this message

In addition to these options, each VISA Plug-in may insert its own options into those available to Resman;
consult your Plug-in’s documentation for information about additional Resman options.

The help option (-h, ~-help) can be used to find all options available with the current VISA/Plug-in
configuration.

KineticSystems VISA VISA Library

2.2 VISA Library Routines

The first time that any of the VISA calls are made, an initialization must be done. The VISA standard
provides no interface for opening the VISA library or for initializing the VISA on a particular platform;
this happens automatically when the first call is made to any VISA function.

The remainder of this chapter describes each VISA Library routine. These routines are all present in the
visa.h file.

Users programming with VISA must use the visa32.lib file to link to the visa32.dll. Users must #include
visa.h.

(U8}

KineticSystems VISA VISA Library Routines

2.2.1 viClose

Syntax

ViStatus viClose(ViSession wvi)

Purpose

Close the specified session, event, or find list.

Description

This function closes a session to a device, event or a find list. All data structures that had been allocated
for the specified vi are freed.

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.

Return Values

VI SUCCESS Session, event, or find list closed successfully.

VI_ERROR INV SESSION The given session or object reference is invalid

KineticSystems VISA

2.2.2 viDisableEvent

VISA Library Routines

Syntax

ViStatus viDisableEvent (ViSession vi,
ViEventType eventType,
ViUIntl6 mechanism)

Purpose

Disable notification of an event type by the specified mechanisms.

Description

This operation disables servicing of an event identified by the event Type parameter for the mechanisms
specified in the mechanism parameter. Specifying VI_ALL_ENABLED EVENTS for the eventType
parameter allows a session to stop receiving all events. The session can stop receiving queued events by
specifying vI_QUEUE. Applications can stop receiving callback events by specifying either vI_HNDLR or
VI_SUSPEND_HNDLR. Specifying VI_ALL MECH disables both the queuing and callback mechanisms.

Parameters
Parameter Name | Direction , Description
vi Input Unique logical identifier to
eventType Input Logical event identifier.
mechanism Input Specifies event handling mechanisms to be disabled. The queuing

mechanism is disabled by specifying VI_QUEUE, and the callback
mechanism is disabled by specifying vI_HNDLR or
VI_SUSPEND_HNDLR. It is possible to disable both mechanisms
simultaneously by specifying vi_arn1,_MECH.

Return Values

VI_SUCCESS Event disabled successfully.

VI_SUCCESS_EVENT DIS

Specified event is already disabled for at least one
of the specified mechanisms.

VI_ERROR _NSUP_OPER The given vi does not support this operation.
VI_ERROR_INV_SESSION The given session or object reference is invalid.
VI ERROR INV EVENT Specified event type is not supported by the

- - resource.
VI _ERROR_INV MECH Invalid mechanism specified.

KineticSystems VISA

2.2.3 viDiscardEvents

VISA Library Routines

Syntax

ViS8tatus viDiscardEvents (ViSession vi,

ViEventType eventType,
ViUInt1l6 mechanism)

Purpose

Discard event occurrences for specified event types and mechanisms in a session.

Description

This operation discards all pending occurrences of the specified event types and mechanisms from the
specified session. The information about all the event occurrences that have not yet been handled is
discarded. This operation is useful to remove event occurrences that an application no longer needs.

Parameters
Parameter Name | Direction Description
vi Input Unique logical identifier to a session.
eventType Input Logical event identifier.
mechanism Input Specifies the mechanisms for which the events are to be discarded.

The vi_QUEUE value is specified for the queuing mechanism and
the VI_SUSPEND_HNDLR value is specified for the pending events

in the callback mechanism. It is possible to specify both
mechanisms simultaneously by specifying v1_ALL MECH.

Return Values

VI SUCCESS

Event queue flushed successfully.

VI_SUCCESS_QUEUE_EMPTY

Operation completed successfully, but queue was
empty.

VI_ERROR NSUP_OPER

The given vi does not support this operation.

VI_ERROR INV_SESSION

The given session or object reference is invalid.

VI_ERROR_INV_EVENT

Specified event type is not supported by the
resource.

VI_ERROR_INV_ MECH

Invalid mechanism specified.

KineticSystems VISA

2.2.4 viEnableEvent

VISA Library Routines

Syntax

ViStatus viEnableEvent (ViSession vi,
ViEventType eventType,
ViUIntl6 mechanism,
ViEventFilter context)

Purpose

Enable notification of a specified event.

Description

This operation enables notification of an event identified by the eventType parameter for mechanisms
specified in the mechanism parameter. The specified session can be enabled to queue events by specifying
VI_QUEUE. Applications can enable the session to invoke a callback function to execute the handler by
specifying VI_HNDLR. The applications are required to install at least one handler to be enabled for this
mode. Specifying VI_SUSPEND_HNDLR enables the session to receive callbacks, but the invocation of the
handler is deferred to a later time. Successive calls to this operation replace the old callback mechanism
with the new callback mechanism. Specifying VI_ALI, ENABLED EVENTS for the event Type parameter

refers to all events that have previously been enabled on this session, making it easier to switch between the
two callback mechanisms for multiple events.

Parameters
Parameter Name | Direction Description

vi Input Unique logical identifier to a session.

eventType Input Logical event identifier.

mechanism Input Specifies event handling mechanisms to be enabled. The queuing
mechanism is enabled by specifying vI_QUEUE, and the callback
mechanism is enabled by specifying vI_HNDLR or
VI_SUSPEND HNDLR. It is possible to enable both mechanisms
simultaneously by specifying "bit-wise OR" of vI_QUEUE and
one of the two mode values for the callback mechanism.

Context Input VI NULL

Return Values

VI_SUCCESS

Event enabled successfully.

VI_SUCCESS_EVENT EN

Specified event is already enabled for at least one of
the specified mechanisms.

VI_ERROR NSUP_OPER

The given vi does not support this operation.

VI_ERROR_INV_ SESSION

The given session or object reference is invalid.

VI_ERROR_INV_EVENT

Specified event type is not supported by the
resource.

KineticSystems VISA VISA Library Routines

VI_ERROR INV MECH Invalid mechanism specified.
A handler is not currently installed for the specified
VI_ERROR HNDLR NINSTALLED event. The session cannot be enabled for the
VI_HNDLR mode of the callback mechanism.

KineticSystems VISA VISA Library Routines

2.2.5 viEventHandler

Syntax

ViStatus viEventHandler (ViSession vi,
ViEventType eventType,
ViEvent context,
ViAddr userHandle)

Purpose

Event service handler procedure prototype.

Description

This user handle is called whenever a session receives an event and is enabled for handling events in the
VI_HNDLR mode. The user passes a reference to a function of their own matching this prototype to

vilnstallHandler (). The handler services the event and returns vI_success on completion. Because

each event type defines its own context in terms of attributes, refer to the appropriate event definition in the
VISA specification to determine which attributes can be retrieved using the context parameter.

Because the event context must still be valid after the user handler returns (so that VISA can free it up), an
application should not invoke the viclose () operation on an event context passed to a user handler.

Normally, an application should return v1_success from all callback handlers. Future versions of VISA
may take actions based on other return values, so a user should return vi_success from handlers.

Parameters
Parameter Name | Direction Description
vi Input Unique logical identifier to a session.
eventType Input Logical event identifier.
context Input A handle specifying the unique occurrence of an event.
userHandle Input A value specified by an application that can be used for identifying
handlers uniquely in a session for an event.

Return Values

| vI_success | Event handled successfully.]

KineticSystems VISA

2.2.6 viFindNext

VISA Library Routines

Syntax

ViStatus viFindNext (viFindList findList, ViRsrc instrDesc)

Purpose

Return the next resource found during a previous call to viFindRsrc ().

Description

This operation returns the next device found in the list created by viFindrsrc (). The list is referenced by
the handle that was returned by viFindRsrec ().

Parameters
Parameter Name | Direction Description
_ ‘ Describes a find list. This parameter must be created by
findList Input s
viFindRsrc ().
Returns a string identifying the location of a device. Strings can
instrDesc Output then be passed to viopen () to establish a session to the given

device.

Return Values

VI SUCCESS

Resource(s) found.

VI_ERROR_INV SESSION

The given findList reference is invalid

VI_ERROR NSUP OPER

The given findList does not support this operation.

VI_ERROR_RSRC NFOQUND

There are no more matches.

10

KineticSystems VISA VISA Library Routines

2.2.7 viFindRsrc

Syntax

ViStatus viFindRsrc(ViSession vi,
VisString expr,
ViPFindList findList,
ViPUInt32 retCnt,
ViRsrc desc)

Purpose

Query a VISA system to locate the resources associated with a specified interface.

Description

This operation matches the value specified in the expr parameter with the resources available for a
particular interface. On successful completion, it returns the first resource found in the list and returns a
count to indicate if there were more resources found for the designated interface. This function also returns
a handle to a find list. This handle points to the list of resources and it must be used as an input to
viFindNext (). When this handle is no Jonger needed, it should be passed to vicClose ().

Both the findList and retCnt parameters are optional; either or both can be specified to VI NULL,
indicating findList handle and/or retCnt values should not be returned.

Parameters

Parameter Direction Description
Name

Resource Manager session (should always be the Default
vi Input Resource Manager for VISA returned from
viOpenDefaultRM()).

This is a regular expression followed by an optional logical

erpPE Input expression. The grammar for this expression is given below.
Findlist Output Rt_eturns a handle i§entifying this search session. This handle
will be used as an input in viFindNext ().
retCnt Output Number of matches.
Returns a string identifying the location of a device. Strings
desc Output can then be passed to viopen () to establish a session to the

given device.

Return Values

VI SUCCESS Resource(s) found.

VI_ERROR_INV_SESSION The given session or object reference is invalid
VI_ERROR_INV_EXPR Invalid expression specified for search.
VI_ERROR_RSRC_NFOUND Specified expression does not match any devices.

11

KineticSystems VISA

VISA Library Routines

2.2.7.1 Search Expression

The search criteria specified in the expr parameter has two parts: a regular expression over a resource

string (which is explained below), and an optional logical expression over attribute values. The regular
expression is matched against the resource strings of resources known to the VISA Resource Manager. If
the resource string matches the regular expression, the attribute values of the resource are then matched
against the expression over attribute values. If the match is successful, the resource has met the search
criteria and gets added to the list of resources found.

2.2.7.1.1 Regular Expression

The regular expression over a resource string consists of ordinary characters as well as special characters. A
regular expression is used for specifying patterns to match in a given string. Given a string and a regular
expression, one can determine if the string matches the regular expression. A regular expression can also be
used as a search criterion. Given a regular expression and a list of strings, one can match the regular
expression against each string and return a list of strings that match the regular expression.

character or expression.

Character Description Symbol
NL/LF New Line / Line Feed "\n"
HT Horizontal Tab A
CR Carrage Return “\r”?
FF Form Feed “\f?
SP Blank Space o

Special Characters
Literal Definition
White space NL, LF, HT, CR, FF, SP
digit "o, on
letter "a",'b"."z", "A""B".."Z"
. "o, 9, at b,
Hex_digtit WA B TR
underscore ©
Literals
Special Characters and Meaning
Operators
? Matches any one character.
Makes the character that follows it an ordinary
character instead of special character. For

\ example, when a question mark follows a
backslash (i.e. '\?), it matches the '?' character
instead of any one character.
Matches any one character from the enclosed

[list] list. A hyphen can be used to match a range of
characters.
Matches any character not in the enclosed /ist. A

[list] hyphen can be used to match a range of
characters.

« Matches 0 or more occurrences of the preceding
character or expression.

. Matches 1 or more occurrences of the preceding

12

KineticSystems VISA VISA Library Routines

Matches either the preceding or following
expression. The or operator | matches the entire
expression that precedes or follows it and not
Jjust the character that precedes or follows it. For
example, VXI|GPIB means (VXI) | (GPIB),
not VXI (I|G)PIB.
(exp) Grouping characters or expressions.

Regular Expression Characters and Operators

exp | exp

2.2.7.1.2 Optional Attribute Expression

The optional attribute expression allows construction of flexible and powerful expressions with the use of
logical ANDs, ORs and NOTs. Equal (==) and unequal (!=) comparators can be used compare attributes of
any type, and in addition, other inequality comparators (>, <, >=, <=) can be used to compare attributes of
numeric type. Only global attributes can be used in the attribute expression.

Special Character Meaning
&& Logical AND
I Logical OR
! Logical negation (NOT)
0 Parenthesis

Special Characters

expr :=

regularExpr ['{' attrExpr '}']
attrExpr :=

attrTerm |

attrExpr '|[' attrTerm
attrTerm :=

attrFactor |

attrTerm '&&' attrFactor
attrFactor :=

"(' attrExpr ')' |

"I" attrPFactor |

relationExpr
relationExpr :=

attributeId compareOp numValue |

attributelId equalityOp stringValue
compareOp :=

[] et l [N I Vet l ot l le=?
equalityOp :=

11 | Tt
attributelId :=

character (character|digit|underscore)*

numValue :=

digit+ |

'-) digit+ |

'0x' hex digit+ |

'0X' hex digit+
stringValue :=

'"1 characterx '

KineticSystems VISA

2.2.7.2 Search expr Examples

VISA Library Routines

expr

Sample Matches

VXI5::7*: INSTR

Matches all VXI instruments on board 5

VXI:2[0-9]*::INSTR

Matches all VXI instruments with logical address starting
with ‘27 (2,21,256,2920, etc.)

PXI::2-[0-9]+::INSTR

Matches all PXI instruments on bus 2

?7*INSTR

Matches all instruments

0%

Matches all resources

VXI:*7:INSTR {VI ATTR SLOT==5}

Matches all VX1 instruments (in all chassis) located in slot 5

PXI::*7::INSTR {VI ATTR_MANF _ID ==
0x11f4 && VI MODEL CODE == 0x635}

Matches all PXI KineticSystems 635 instruments

14

KineticSystems VISA

2.2.8 viGetAttribute

VISA Library Routines

Syntax

ViStatus viGetAttribute (ViSession vi,
ViAttr attribute,
ViPAttrState attrState)

ViStatus viGetAttribute (ViEvent vi,
ViAttr attribute,
ViPAttrState attrState)

ViStatus viGetAttribute(ViFindList vi,
ViAttr attribute,
ViPAttrState attrState)

Purpose

Retrieve the state of an attribute.

Description

The viGetAttribute () operation is used to retrieve the state of an attribute for the specified session,

event, or find list.

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session, event, or find list.
attribute Input Resource attribute for which the state query is made.
The state of the queried attribute for a specified resource. The
attrstate Output interpretation of the returned value is defined by the individual

resource.

Return Values

VI SUCCESS

Attribute retrieved successfully.

VI_ERROR_INV_SESSION

The given session or object reference is invalid

VI_ERROR NSUP ATTR

The specified attribute is not defined by the referenced
session, event, or find list.

15

KineticSystems VISA VISA Library Routines

2.2.9 viln8/viInl16/viln32

Syntax

ViStatus viIn8(ViSession vi,
ViUIntlé space,
ViBusAddress offset,
ViPUINt8 wvals§)

ViStatus viInlé6(ViSession vi,
ViUIntlé space,
ViBusAddress offset,
ViPUIntl6 vallé)

ViStatus viIn32 (ViSession vi,
ViUIntlé space,
ViBusAddress offset,
ViPUINt32 val32)

Purpose

Read in an 8-bit, 16-bit, or 32-bit value from the specified memory space and offset.

Description

This operation, by using the specified address space, reads in 8, 16, or 32 bits of data from the specified
offset. This operation does not require viMapaAddress () to be called prior to its invocation.

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
space Input Specifies the address space.
offset Input Offset (in bytes) of the device to read from.
Data read from bus (8 bits for vi1ins (),16
Zzgé valle, Output bits for viInis (), and 32 bits for
viIn32()).
Space Description
VI _Al6_SPACE A16 address space of VXI/MXI bus
VI_A24_SPACE A24 address space of VXI/MXI bus
VI _A32_SPACE A32 address space of VXI/MXI bus
VI_PXI_CFG_SPACE PXI Configuration space
VI_PXI BARO SPACE PXI BARO space
VI_PXI_BAR1 SPACE PXI BARI space
VI_PXI_BAR2 SPACE PXI BAR?2 space
VI_PXI BAR3 SPACE PXI BAR3 space
VI_PXI_BAR4 SPACE PXI BAR4 space
VI_PXI BAR5 SPACE PXI BARS space

16

KineticSystems VISA

Return Values

VISA Library Routines

VI SUCCESS

Operation completed successfully.

VI _ERROR INV_SESSION

The given session or object reference is invalid

VI_ERROR NSUP OPER

The given vi does not support this operation.

VI_ERROR BERR

Bus error occurred during transfer.

VI ERROR INV SPACE

Invalid address space specified.

VI _ERROR INV OFFSET

Invalid offset specified.

VI_ERROR IO

Device unavailable

VI_ERROR_NSUP_OFFSET

Specified offset is not accessible from this
hardware.

VI_ERROR NSUP WIDTH

Specified width is not supported by this hardware.

VI_ERROR NSUP_ALIGN OFFSET

The specified offset is not properly aligned for the
access width of the operation.

17

KineticSystems VISA

2.2.10 vilnstallHandler

VISA Library Routines

Syntax

VisStatus viInstallHandler(ViSession vi,
ViEventType eventType,
ViHndlr handler,
Viaddr userHandle)

Purpose

Install handlers for event callbacks.

Description

This operation allows applications to install handlers on sessions. The handler specified in the handler
parameter is installed along with previously installed handlers for the specified event. Applications can
specify a value in the userHandle parameter that is passed to the handler on its invocation. VISA
identifies handlers uniquely using the handler reference and this value.

Parameters

Parameter Name Direction Description

vi Input Unique logical identifier to a session.

eventType Input Logical event identifier.

handler Input Inﬁerprete(j' asa valid reference to a handler to be installed by a
client application.

userHandle Input A val.ue_spemﬁed by an application that can be used for
identifying handlers uniquely for an event type.

Return Values

VI_SUCCESS

Event handler installed successfully.

VI_ERROR_INV_SESSION

The given session or object reference is invalid

VI_ERROR_INV_EVENT

Specified event type is not supported by the resource.

VI_ERROR_INV_HNDLR REF

The given handler reference is invalid.

VI_ERROR_HNDLR REF

The handler was not installed. This may be returned if an
application attempts to install multiple handlers for the
same event on the same session.

KineticSystems VISA VISA Library Routines

2.2.11 viMapAddress

Syntax

ViStatus viMapAddress (ViSession vi,
ViUIntl6é mapSpace,
ViBusAddress mapBase,
ViBusSize mapSize,
ViBoolean access,
ViAddr suggested,
ViPAddr address)

Purpose

Map the specified memory space into the process’s address space.

Description

This operation maps in a specified memory space. The memory space that is mapped is dependent on the
type of interface specified by the vi parameter and the mapSpace parameter. The address parameter
returns the address in your process space where memory is mapped.

Parameters
Parameter Name | Direction Description
vi Input Unique logical identifier to a session.
mapSpace Input Specifies the address space to map.
mapBase Input Offset (in bytes) of the memory to be mapped.
mapSize Input Amount of memory to map (in bytes).
access Input VI_FALSE
suggested Input VI NULL
address Output Address in your process space where the memory was mapped.

Return Values

VI SUCCESS Map successful.

VI_ERROR_INV SESSION The given session or object reference is invalid

VI_ERROR_NSUP OPER The given vi does not support this operation.
The specified session already contains a mapped

VI ERROR WINDOW MAPPED .
- - - window.

Unable to start operation because setup is invalid

VI _ERROR INV SETUP R . . .
- - - (due to attributes being set to an inconsistent state).

VI_ERROR_INV SPACE Invalid address space specified.
VI_ERROR INV SIZE Invalid size of window specified.
VI_ERROR INV OFFSET Invalid offset specified.
VI_ERROR_INV ACC MODE Invalid access mode.

viMapAddress () could not acquire resource or

VI ERROR TMO R . X
- - perform mapping before the timer expired.

19

KineticSystems VISA

2.2.12 viMovelIn8/viMovelnl6/viMoveIln32

VISA Library Routines

Syntax

ViStatus viMoveIn8 (ViSession vi,
ViUIntlé space,
ViBusAddress offset,
ViBusSize length,
ViAUInt8 bufg)

Vistatus viMoveInlé6 (ViSession vi,

ViUIntl6 space,
ViBusAddress offset,
ViBusSize length,
ViAUInt1l6 buflé)

Vistatus viMoveIn32 (ViSession vi,

ViUIntlé space,
ViBusAddress offset,
ViBusSize length,
ViAUInt32 buf32)

Purpose

Move a block of data from the specified address space and offset to local memory in increments of 8, 16, or

32 bits.

Description

This operation, by using the specified address space, reads in 8, 16, or 32 bits of data from the specified
offset. This operation does not require viMapAddress () to be called prior to its invocation.

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
Space Input Specifies the address space.
offset Input Offset (in bytes) of the starting address to read
length Input Number of elements to transfer, where the data

width of the elements to transfer is identical to
data width (8, 16, or 32 bits).

buf8, bufle,
buf3?2

Output Data read from bus

Space

Description

VI_R16_SPACE

A16 address space of VXI/MXI bus

VI A24 SPACE

A24 address space of VXI/MXI bus

VI _A32 SPACE

A32 address space of VXI/MXI bus

VI_PXI_CFG_SPACE

PXIT Configuration space

VI_PXI BARO SPACE

PXI BARO space

20

KineticSystems VISA

VISA Library Routines

VI_PXI BAR1 SPACE

PX1I BARI space

VI_PXI_BAR2 SPACE

PXI BAR2 space

VI_PXI BAR3 SPACE

PXI BARS3 space

VI_PXI BAR4 SPACE

PXI BAR4 space

VI_PXI BARS SPACE

PXI BARS space

Return Values

VI SUCCESS

Operation completed successfully.

VI ERROR INV_SESSION

The given session or object reference is invalid

VI_ERROR NSUP OPER

The given vi does not support this operation.

VI _ERROR TMO

Timeout expired before operation completed.

VI_ERROR BERR

Bus error occurred during transfer.

VI_ERROR INV_SPACE

Invalid address space specified.

VI_ERROR INV_OFFSET

Invalid offset specified.

VI_ERROR NSUP_OFFSET

Specified offset is not accessible from this hardware.

VI_ERROR NSUP_WIDTH

Specified width is not supported by this hardware.

VI_ERROR_INV_LENGTH

Invalid length specified.

VI_ERROR_NSUP ALIGN OFFSET

The specified offset is not properly aligned for the
access width of the operation.

KineticSystems VISA

2.2.13 viMoveOut8/viMoveOut16/viMoveOut32

VISA Library Routines

Syntax

ViStatus viMoveOut8(ViSession vi,

ViUIntlé space,
ViBusAddress offset,
ViBusSize length,
ViAUInt8 buf8)

ViStatus viMoveOQutl6 (ViSession vi,

ViStatus viMoveCOut32

ViUIntlé space,
ViBusAddress offset,
ViBusSize length,
ViAUIntl6 buflé)

(ViSession vi,
ViUIntlé6 space,
ViBusAddress offset,
ViBusSize length,
ViAUInt32 buf32)

Purpose

Move a block of data from local memory to the specified address space and offset in increments of 8, 16, or

32 bits.

Description

This operation, by using the specified address space, writes 8, 16, or 32 bits of data to the specified offset.
This operation does not require viMapAddress () to be called prior to its invocation.

Parameters

Parameter Name Direction Description

vi Input Unique logical identifier to a session.

space Input Specifies the address space.

offset Input Offset (in bytes) of the starting address to read

length Input Number of elements to transfer, where the data
width of the elements to transfer is identical to
data width (8, 16, or 32 bits).

buf8, buflé, Input Data to write to bus.

buf32

Space Description

VI_Al6_SPACE

A16 address space of VXI/MXI bus

VI_A24_ SPACE

A24 address space of VXI/MXI bus

VI_A32_ SPACE

A32 address space of VXI/MXI bus

VI_PXI_ CFG_SPACE

PXI Configuration space

VI_PXI BARO SPACE

PXI BARO space

22

KineticSystems VISA

VISA Library Routines

VI_PXI BAR1 SPACE PXI BARI space
VI_PXI_BAR2 SPACE PXI BAR?2 space
VI_PXI_BAR3 SPACE PXI BAR3 space
VI_PXI BAR4_SPACE PXI BAR4 space
VI_PXI BAR5 SPACE PXI BARS space

Return Values

VI SUCCESS

Operation completed successfully.

VI_ERROR_INV SESSION

The given session or object reference is invalid

VI_ERROR NSUP_OPER

The given vi does not support this operation.

VI_ERROR_TMO

Timeout expired before operation completed.

VI ERROR BERR

Bus error occurred during transfer,

VI _ERROR INV_SPACE

Invalid address space specified.

VI_ERROR_INV OFFSET

Invalid offset specified.

VI_ERROR_NSUP OFFSET

Specified offset is not accessible from this hardware.

VI_ERROR_NSUP WIDTH

Specified width is not supported by this hardware.

VI_ERROR_INV_LENGTH

Invalid length specified.

VI_ERROR_NSUP_ALIGN OFFSET

The specified offset is not properly aligned for the
access width of the operation,

S
(OS]

KineticSystems VISA

2.2.14 viOpen

VISA Library Routines

Syntax

ViStatus viOpen (ViSession sesn,
ViRsrc rsrcName,
ViAccessMode accessMode,
ViUInt32 timeout,
ViPSession vi)

Purpose

Open a session to the specified device.

Description

This operation opens a session to the specified device. It returns a session identifier that can be used to call
any other operations of that device.

The grammar for the Address String is shown in below. Optional string segments are shown in square

brackets ([]).
Interface Grammar ~
VX1 VXI[board][::nodel::VXI logical Address[::INSTR]
PX1 PXI[inteface]::bus-device[function][::INSTR]
PXI PX1[bus]::device[::function][::INSTR]
SC SC[::node)::slot . INSTR]
Parameters
Parameter Name | Direction Description
sesn Input Resource Manager session (should always be the
Default Resource Manager for VISA returned from
viOpenDefaultRM()).
rsrcName Input Unique symbolic name of a resource.
accessMode Input VI NULL
timeout Input VI NULL
vi Output Unique logical identifier reference to a session.

Return Values

VI SUCCESS

Session opened successfully.

VI_SUCCESS_DEV_NPRESENT

specified address is not responding.

Session opened successfully, but the device at the

VI ERROR_INV SESSION

The given session or object reference is invalid

VI_ERROR_NSUP_OPER

Default Resource Manager session.

The given sesn does not support this operation.
For VISA, this operation is supported only by the

24

KineticSystems VISA

VISA Library Routines

VI ERROR_TMO

Timeout expired before operation completed.

VI_ERROR INV_RSRC NAME

Invalid resource reference specified. Parsing error.

VI_ERROR RSRC_NFOUND

Insufficient location information or resource not
present in the system.

VI_ERROR ALLOC

Insufficient system resources to open a session.

25

KineticSystems VISA

2.2.15 viOpenDefaultRM

VISA Library Routines

Syntax

ViStatus viOpenDefaultRM(ViPSession sesn)

Purpose

Return a session to the Default Resource Manager resource.

Description

This function must be called before any VISA operations can be invoked. The first call to this function
initializes the VISA system, including the Default Resource Manager resource, and also returns a session to
that resource. Subsequent calls to this function return unique sessions to the same Default Resource

Manager resource.

Parameters
Parameter Name Direction Description
sesn Output Unique logical identifier to a Default Resource

Manager session.

Return Values

VI_SUCCESS

Session to the Default Resource Manager resource
created successfully.

VI_ERROR ALLOC

Insufficient system resources to create a session to the
Default Resource Manager resource.

VI_ERROR_ SYSTEM ERROCR

The VISA system failed to initialize.

26

KineticSystems VISA

2.2.16 viOut8/viOutl6/viOut32

VISA Library Routines

Syntax

ViStatus viOut8(ViSession vi,
ViUIntlé space,
ViBusAddress offset,
ViUInt8 wvals)

ViStatus viOutlé(ViSession vi,
ViUIntl6é space,
ViBusAddress offset,
ViUIntl6 vallé)

ViStatus viOut32(ViSession vi,
ViUIntl6 space,
ViBusAddress offset,
ViUInt32 val32)

Purpose

Write an 8-bit, 16-bit, or 32-bit value to the specified memory space and offset.

Description

This operation, by using the specified address space, writes 8, 16, or 32 bits of data to the specified offset.
This operation does not require viMapAddress () to be called prior to its invocation.

Parameters
Parameter Name Direction , Description
vi Input Unique logical identifier to a session.
Space Input Specifies the address space.
offset Input Offset (in bytes) of the device to read from.
Data to write to bus (8 bits for viouts (),
val8, valle, 16 bits for viout1s (), and 32 bits for
Input
val32 viout32 ().
Space Description
VI _Al6_SPACE A16 address space of VXI/MXI bus
VI_A24_SPACE A24 address space of VXI/MXI bus
VI_A32 SPACE A32 address space of VXI/MXI bus
VI _PXI_CFG_SPACE PXI Configuration space
VI_PXI BARO SPACE PXI BARO space
VI_PXI BAR1 SPACE PXI BARI1 space
VI_PXI_BAR2 SPACE PXI BAR2 space
VI_PXI_BAR3 SPACE PXI BAR3 space
VI_PXI_BAR4 SPACE PX1 BAR4 space
VI_PXI BAR5 SPACE PXI BARS space

KineticSystems VISA VISA Library Routines

Return Values

VI SUCCESS Operation completed successfully.
VI_ERROR INV SESSION The given session or object reference is invalid
VI_ERROR NSUP OPER The given vi does not support this operation.
VI_ERROR BERR Bus error occurred during transfer,
VI_ERROR_INV_ SPACE Invalid address space specified.
VI_ERROR INV OFFSET Invalid offset specified.
VI_ERROR IO Device unavailable
VI ERROR NSUP OFFSET Specified offset is not accessible from this
- - - hardware.
VI_ERROR_NSUP_WIDTH Specified width is not supported by this hardware.
VI ERROR NSUP ALIGN OFFSET The spec‘iﬁed offset is not-properly aligned for the
- - - - access width of the operation.

28

KineticSystems VISA

2.2.17 viRead

VISA Library Routines

Syntax

ViStatus viRead(ViSession vi,
ViPBuf buf,
ViUInt32 cnt,
ViPUINnt32 retCnt)

Purpose

Read data from device synchronously.

Description

The synchronous read operation synchronously transfers data. The data read is to be stored in the buffer
represented by buf. This operation returns only when the transfer terminates. Only one synchronous read

operation can occur at any one time.

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
Represents the location of a buffer to receive data from a
buf Output .
device.
cnt Input Number of bytes to be read.
Represents the location of an integer that will be set to
retCnt Out =
" utput the number of bytes actually transferred.

Return Values

VI_SUCCESS

The operation completed successfully and the END
indicator was received.

VI_SUCCESS_TERM CHAR

The specified termination character was read.

VI_SUCCESS_MAX CNT

The number of bytes read is equal to count.

VI_ERROR_INV SESSION

The given session or object reference is invalid

VI _ERROR_NSUP OPER

The given vi does not support this operation.

VI _ERROR TMO

Timeout expired before operation completed.

VI_ERROR_RAW WR_PROT VIOL

Violation of raw write protocol occurred during transfer.

VI_ERROR RAW RD PROT VIOL

Violation of raw read protocol occurred during transfer.

VI_ERROR OUTP_PROT VIOL

Device reported an output protocol error during transfer.

VI_ERROR BERR

Bus error occurred during transfer.

VI_ERROR_NCIC

The interface associated with the given vi is not currently
the controller in charge.

VI_ERROR NLISTENERS

No Listeners condition is detected (both NRFD and
NDAC are deasserted).

VI_ERROR_IO

An unknown 1/0 error occurred during transfer.

29

KineticSystems VISA VISA Library Routines

2.2.18 viSetAttribute

Syntax

ViStatus viSetAttribute(ViSession vi,
ViAttr attrName,
ViAttrState attrvValue)

Purpose

Set the state of an attribute.

Description

The viSetAttribute() operation is used to modify the state of an attribute for the specified session.

Parameters
Parameter Name Direction Description

vi Input Unique logical identifier to a session.

attrName Input Session for which the state is modified.
The state of the attribute to be set for the specified resource.
The interpretation of the individual attribute value is defined

attrvalue Input
by the resource.

Return Values

VI SUCCESS Attribute value set successfully.
VI ERROR INV SESSION The given session or object reference is invalid
The specified attribute is not defined by the referenced

VI_ERROR_NSUP ATTR .
- - - session.

VI ERROR NSUP ATTR STATE The specified state of the attribute is not valid, or is
- — - - not supported as defined by the session.

VI_ ERROR ATTR READONLY The specified attribute is read-only.

KineticSystems VISA

2.2.19 viStatusDesc

VISA Library Routines

Syntax

ViStatus viStatusDesc(ViSession vi,
ViStatus status,
ViPString desc)

Purpose

Return a user-readable description of the status code passed to the operation.

Description

The viStatusDesc () operation is used to retrieve a user-readable string that describes the status code

presented.
Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
status Input Status code to interpret.
desc Output The user-readable string interpretation of the
status code passed to the operation.

Return Values

VI_SUCCESS

Description successfully returned.

VI_WARN_UNKNOWN_STATUS

The status code passed to the operation could not be
interpreted.

KineticSystems VISA VISA Library Routines

2.2.20 viUninstallHandler

Syntax

ViStatus viUninstallHandler (ViSession vi,
ViEventType eventType,
ViHndlr handler,
ViAddr userHandle)

Purpose

Uninstall handlers for events.

Description

This operation allows client applications to uninstall handlers for events on sessions. Applications should
also specify the value in the userHandle parameter that was passed while installing the handler. VISA
identifies handlers uniquely using the handler reference and this value. All the handlers, for which the
handler reference and the value matches, are uninstalled. If VI ANY_ HNDLR is passed in as the value of
handler, all the handlers with the matching value in the userHandle parameter are uninstalled.

Parameters
Parameter Name | Direction Description

vi Input Unique logical identifier to a session.

eventType Input Logical event identifier.

handler Input Interpreted as a valid reference to a handler to be uninstalled by
a client application.

userHandle Input A value specified by an application that can be used for
identifying handlers uniquely in a session for an event.

Return Values

VI SUCCESS Event handler successfully uninstalled.

VI_ERROR INV SESSION The given session or object reference is invalid

VI_ERROR_NSUP OPER The given vi does not support this operation.

VI_ERROR INV EVENT Specified event type is not supported by the resource.
Either the specified handler reference or the user

VI_ERROR_INV_HNDLR REF context value (or both) does not match any installed
handler.

VI ERROR HNDLR NINSTALLED A ha?dler is not currently installed for the specified

- - - event.

53]
o

KineticSystems VISA VISA Library Routines

2.2.21 viUnmapAddress

Syntax

ViStatus viUnmapAddress (ViSession vi)

Purpose

Unmap memory space previously mapped by viMapAddress ().

Description

This operation unmaps the region previously mapped by the viMapaAddress () operation.

Parameters
Parameter Name | Direction Description
vi Input Unique logical identifier to a session.

Return Values

VI _SUCCESS Operation completed successfully.

VI_ERROR INV SESSION The given session or object reference is invalid
VI _ERROR NSUP OPER The given vi does not support this operation.
VI_ERROR WINDOW NMAPPED The specified session is not currently mapped.

(98]
(V5]

KineticSystems VISA VISA Library Routines

2.2.22 viWaitOnEvent

Syntax

ViStatus viWaitOnEvent (ViSession vi,
ViEventType inEventType,
ViUInt32 timeout,
ViPEventType outEventType,
ViPEvent outContext)

Purpose

Wait for an occurrence of the specified event for a given session.

Description

The viwaitOnEvent () operation suspends execution of a thread of application and waits for an event
inEventType for atime period not to exceed that specified by t imeout. Refer to individual event
descriptions for context definitions. If the specified inEventType is VI_ALL ENABLED EVENTS, the

operation waits for any event that is enabled for the given session. If the specified timeout value is
VI_TMO_INFINITE, the operation is suspended indefinitely. If the specified timeout value is

VI_TMO_IMMEDIATE, the operation will return immediately with an event (or error if no event is available)
without suspending the application thread.

The outEventType and outContext parameters to the viWaitOnEvent () operation are optional (can
be set to VI_NULL). This can be used if the event type is known from the inEventType parameter, or if
the eventContext is not needed to retrieve additional information.

Ifa valid out Contexct is returned, the user application is responsible for closing it by passing it into
viClose () when it is no longer needed.

Parameters
Parameter Name | Direction Description

vi Input Unique logical identifier to a session.

inEventType Input Logical identifier of the event(s) to wait for.

timeout Input Absolute time period in time units that the resource shall
wait for a specified event to occur before returning the
time elapsed error. The time unit is in milliseconds.

outEventType Output Logical identifier of the event actually received.

outContext Output A handle specifying the unique occurrence of an event.

Return Values

Wait terminated successfully on receipt of an event

VI_SUCCESS .
- occurrence. The queue is empty.

Wait terminated successfully on receipt of an event

VI SUCCESS QUEUE NEMPTY X . N .
- - - notification. There is still at least one more event

KineticSystems VISA

VISA Library Routines

occurrence of the type specified by inEvent Type
available for this session.

VI _ERROR INV_ SESSION

The given session or object reference is invalid

VI_ERROR NSUP_OPER

The given vi does not support this operation.

VI_ERROR INV_EVENT

The specified session is not currently mapped.

VI_ERROR_TMO

Specified event did not occur within the specified time
period.

VI _ERROR NENABLED

The session must be enabled for events of the
specified type in order to receive them.

KineticSystems VISA

2.2.23 viWrite

VISA Library Routines

Syntax

ViStatus viWrite (ViSession vi,
ViBuf buf,
ViUInt32 cnt,

ViPUInt32 retcnt)

Purpose

Write data to device synchronously.

Description

The write operation synchronously transfers data. The data to be written is in the buffer represented by
buf. This operation returns only when the transfer terminates. Only one synchronous write operation can

occur at any one time.

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
Represents the location of a data block to be sent to
buf Input .
device.
cnt Input Number of bytes to be written.
retent Output Represents the location of an integer that will be set to
the number of bytes actually transferred.

Return Values

VI SUCCESS

Transfer completed.

VI ERROR INV SESSION

The given session or object reference is invalid

VI_ERROR NSUP_OPER

The given vi does not support this operation.

VI _ERROR_TMO

Timeout expired before operation completed.

VI_ERROR_RAW WR PROT VIOL

Violation of raw write protocol occurred during transfer.

VI_ERROR_RAW RD_PROT VIOL

Violation of raw read protocol occurred during transfer.

VI_ERROR_INP_PROT VIOL

Device reported an input protocol error during transfer.

VI ERROR BERR

Bus error occurred during transfer.

VI_ERROR_NCIC

The interface associated with the given vi is not
currently the controller in charge.

VI_ERROR_NLISTENERS

No Listeners condition is detected (both NRFD and
NDAC are deasserted).

VI_ERROR_IO

An unknown /O error occurred during transfer.

VI _ERROR_TMO

Timeout expired before operation completed.

KineticSystems VISA KineticSystems VISA Special Features
3 KineticSystems VISA Special Features
3.1 Debugging

KineticSystems VISA provides a spy mechanism for debugging. When activated, spy generates output for
every VISA API function called by and application. The output consists of the function name, the
arguments passed in, and the overall return value. Spy output is generated at the end of the API call; this is
necessary in order to display the overall return value, which is of course not known until the operation
completes.

When an argument fo a function is a pointer, if the object pointed to is a string or a datatype of 32 bits or
less, the pointer is dereferenced on output, so the value it points to is displayed, instead of the pointer itself,
which is unlikely to be of much value. If the pointer points to a structure or an array, the pointer itself it
simply displayed.

In Windows environments, spy output goes to the debugger, if the application is being run in a debugger. If
the application is not running in a debugger, output goes to the system debugger, where it can be spooled
using a tool like dbgview. Please see http://www.sysinternals.com/ntw2k/freeware/debueview.shtml for
details on dbgview.

Even when spy output is completely turned off, trace level output is produced when hard or unexpected
failures are encountered (a file that should exist could not be opened, a resource was not acquired, an OS
call unexpectantly returned failure). Inexplicable failures can often be identified by watching the
appropriate debug output when the failure occurs.

Spy functionality can be activated on either a global or per device scope. When activated globally, output
is generated for all operations, all devices. Alternatively, spy can be activated on 1 or more individual
devices; in this case, only operations that specifically involve the specified device(s) generate output.

‘Device spy’ is activated when the device is referenced by software. ‘Global spy” is activated when any
device is referenced, as well as when any defaultRM session is referenced. Therefore, an application which
only references 1 device will have slightly different spy output depending on if activated by device or
globally. For example, a VISA call to viOpendefaultRM() does not touch any device, but does touch a
defaultRM session. Therefore, ‘device spy’ will produce no output for viOpenDefaultRM(), but global spy
will. Device spy only produces output for operations which touch that device. Both device and global spy
can be activated simultaneously, but this is probably unwise. Duplicate output will be generated (once
when device is touched and another when the defaultRM session is touched), and it is hard to tell the two
apart.

Activation of Global Spy
Spy functionality is activated on a global basis by modifying the registry key

HKEY_LOCAL_MACHINE\SOFTWARE\KineticSystems, LLC\Pisa\Spy: ‘0’ is off, ‘1’ is on. The effect
takes place the next time an application runs.

KineticSystems VISA KineticSystems VISA Special Features

Activation of Per-Device Spy

Spy functionality is activated on a single device by hand-editing the resman table. Each line in the resman
table represents 1 device; attributes of the device are separated by commas. Different device types have
different formats (e.g., VXI vs. CPCI), but the first 2 fields are the same for all devices: the 1 field is a
string representing the device type, and the 2™ field is a numeric value that represents the spy level. The
value of ‘0’ represents ‘off and ‘1” represents ‘on’. Activation of the spy level is done simply by opening
the resman table in a text editor such as wordpad, changing the spy field on 1 or more devices, and saving
the table.

vmicvxi,0,0,DEVICE 00 01,-1,0,0,£29,KineticSystems,..
vmicvxi,1,1,V208 ,-1,0,3,f29,KineticSystems, ..
vmicvxi,0,2,DEVICE 02 01,-1,0,2,£29,KineticSystems,..

/

Device type Spy Level Logical Address
(VXI shown) (VXD

4 14

Spy activated for logical address 1

The next time the application runs, spy output is generated as specified. By default, resman writes out the
spy level of all devices to ‘0’ (off).

3.2 Services Directly offered via VISA Plug-ins

Some VISA Plug-in modules offer functionality and services beyond the scope of VISA. For example, a
Plug-in which supports an instance of VXI may export functions that allow an application to directly
interact with VXTI hardware, bypassing VISA. To access this functionality, the user would simply link their
application to the Plug-in library (or dynamically load the Plug-in library from the application). Please
consult the documentation included with the Plug-in for information on any additional services offered.

38

