Interconnect Slot-0 Controller

User's Manual

August 27, 2004

(C) 2001, 2003, 2004 Copyright by KineticSystems Company, LLC Lockport, Illinois All rights reserved

CONTENTS

UNPACKING AND INSTALLATION	
Logical Address Switches	
Module Insertion	***************************************
FRONT PANEL INFORMATION	
Node Address Switch	
Option Specific Connectors	4
SMB Connector Option	
Triggor Expansion Connector Option	
1 1001 Optio	
Serial Port	······ (
VXIBUS CONNECTORS	
STRAPPING INFORMATION	
Strap Descriptions	10
Strap Descriptions VXIbus Slot0 Configuration	11
VXIbus Slot0 Configuration	12
V160xyz3 Slot0 Configuration Bus Request Level	12
Bus Request Level Interrupt Handler	13
Interrupt Handler	13
TTL Trigger I/O	13
SWITCHING INFORMATION	
Switch Descriptions	15
V 100 Sloto Configuration	
Dus Request Level	10
interrupt transier	4.0
11D 111gg01 I/O	
CLK10 Source	20
PROGRAMMING INFORMATION	21
VMEbus/VXIbus Addressing	21
A16 Base Address	21
VXIbus Configuration Registers	
V160-XYZ3 INTERNAL REGISTER DESCRIPTIONS	33
SPECIAL HIGHWAY INSTRICTIONS	46
Addressed Slave Trigger Instruction	46
Stoudoust Trigger Instruction	47
LIST PROCESSING INSTRUCTION FORMATS	48
/XI/VME INSTRUCTIONS	49
/XI/VME SINGLE TRANSFER INSTRUCTIONS	
	52

VXI/VME BLOCK TRANSFER INSTRUCTIONS	54
VXI/VME SINGLE INLINE WRITE INSTRUCTION	57
SPECIAL INSTRUCTIONS	50
Trait mistraction	ćo
Dianch instructions	
Onconditional Branch Instruction	
Source Trigger Generate Interrupt Instruction	
Generate Interrupt Instruction	
CONTROL/STATUS RGISTER	62
LISTPROCESSING OPERATION	60
Timer Initiated List Execution	62
Multibuffer Memory Operation	
Demand Messages	65
1 toolt Disable I uncholl	
DSP Firmware	67
Serial Port Functions	68
APPENDIX	68
	70-76

LIST OF FIGURES

Figure 1	V160-xyz3 Logical Address Switches
Figure 2	V160-xyz3 Logical Address Switches
Figure 3	Front Panel Layout
Figure 4	Node Address 3 Stranning 4
Figure 5	Strapping
Figure 6	1 1 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Switch Setting 3
	LIST OF TABLES
	LIST OF TABLES
Table 1. St	tatus LED Definitions
Table 14C	CLK 10 Configurations 20
Table 15. C	Configuration Registers Configuration (A16) Space 22
Table 18. Ti	imer Initiated List Processing Example
	64

Interconnect VXI Slot-0 Controller

Part of the high-throughput, low-latency Grand Interconnect

V160

Features

- Provides a VXIbus interface for the Interconnect Highway
- Up to 126 controllers per Interconnect network
- Provides full VXI Slot-0 functionality
- Provides full throughput with a 2 km maximum distance between fiber-optic nodes
- Provides up to 10 Mbyte/s highway throughput
- · Includes a high-speed command processor
- Supports buffer memory options
- TTL Trigger Expansion

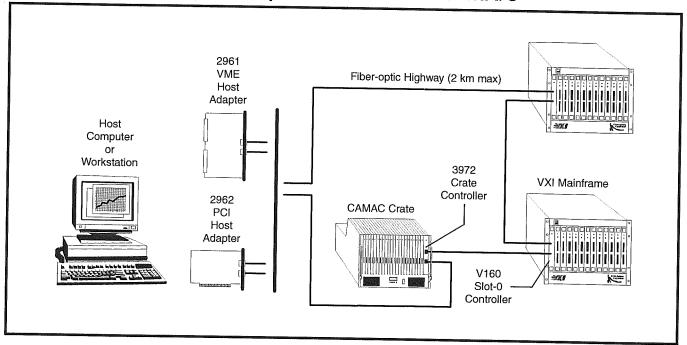
Typical Applications

- · Jet aircraft engine test cells
- · Rocket engine test cells
- Missile testing
- Wind tunnel data acquisition and control
- Aerospace testing
- Nuclear accelerator control and monitoring
- High-performance ATE
- Multi-mainframe VXIbus systems
- Distributed VXIbus systems
- · Systems requiring galvanic isolation

General Description (Product specifications and descriptions subject to change without notice.)

The Grand Interconnect connects multiple I/O chassis to a host computer, providing a high-throughput, deterministic data acquisition and control system. A complete Grand Interconnect system includes an Interconnect Host Adapter (IHA), up to 126 I/O nodes that may include VXI Slot-0 controllers and/or CAMAC (IEEE 583) crate controllers, and a fiber-optic highway. The system supports distances between nodes up to 2 km (6560 ft).

The V160 is a single-width, C-size, VXIbus controller that interfaces the Interconnect Highway to a VXI chassis. It is a slave device on the highway and receives its commands from an Interconnect Host Adapter. This module meets all the requirements of a VXIbus Slot-0 controller, including a MODID register for geographic addressing, a "CLK10" 10 MHz source, TTL/ECL trigger functions, and VXI interrupt handling. Interrupts generated in the VXI chassis are acknowledged by the V160, causing a demand message to be transmitted over the highway to notify the host.


The V160 communicates with the VXIbus using A32, A24, or A16 addressing modes as well as D32, D16, or D08 (EO) data transfers. All access via VXIbus is performed using register-based commands. This module includes a 16 MHz clock driver, a data transfer bus priority arbiter, and an interrupt handler.

List processing is included to allow the V160 to execute a sequence of preloaded write or read commands to selected VXI module registers. The list can be triggered by a software command from the Interconnect Host Adapter (IHA); an internal, crystal-controlled, programmable counter/timer; an externally supplied trigger source; a preselected interrupt; or a TTL/ECL trigger line. During setup the list is downloaded over the highway. Once execution begins, data received from VXIbus read operations is stored in a 2 kbyte FIFO memory for transmission to the host computer. For applications that require more than 2 kbytes of storage for timer-initiated lists, a 4 Mbyte buffer memory option (V160-wB22) is available. For VXIbus write operations, data may be embedded in the list or extracted from a FIFO memory.

The Interconnect Host Adapter also contains a list processor. Its list memory can be used for all I/O transfers. With this approach, both the I/O register addresses and the data must be transmitted over the highway which reduces overall throughput. However, a high-performance list operation for a multi-chassis system can be obtained by using an instruction in the IHA's list processor to transfer a block of read or write data for all operations in a chassis; then the list processor in each V160 can select the sequence of I/O registers to be read or written. This causes only data to be transmitted over the highway, resulting in maximum I/O throughput. The full 10 Mbyte/s data throughput can be achieved by the V160, limited only by the IHA and VXI module transfer capabilities. The I/O list can be driven by a programmable timer with rates ranging from less than 0.06 Hz to 500 kHz.

Grand Interconnect Configuration Options with CAMAC and/or VXI I/O

Item	Specification			
Connectors				
Fiber Optic (Hwy In and Hwy Out)	ST-Type Co	nnectors		
Serial Port (Test interface)	9P "D"			
Clock I/O	SMB (V160-	·Axyz)		
Trigger I/O	SMB (V160-			
Trigger Out (A and B)	SMB (V160-	Axyz)		
Inhibit	SMB (V160-	Axyz)		
Execute List		SMB (V160-Axyz)		
Trigger Expansion	26 Position I	26 Position High Density Connector (V160-Bxyz)		
Backup		5.54 mm Power Connector		
Power Requirements	+5 V	-5.2 V	-2 V	
AA1z	6.7 A	250 mA	250 mA	
AByz	8.5 A	250 mA	250 mA	
BA1z	7.0 A	250 mA	250 mA	,
BByz	8.8 A	250 mA	250 mA	
Environmental and Mechanical				
Temperature range				
Operational	0°C to 50°C	0°C to 50°C		
Storage	-25°C to +75	-25°C to +75°C		
Relative humidity	0 to 85%, no	0 to 85%, non-condensing, to 40°C		
Cooling requirements	10 CFM	I		
Dimensions	340 mm x 23	340 mm x 233.35 mm x 30.48 mm (C-size VXIbus)		
Front-panel potential		Chassis ground		

Ordering Information

Model V160-AA13 Interconnect VXI Slot-0 Controller

Model V160-AB13 Interconnect VXI Slot-0 Controller with 1 Mbyte Memory

Model V160-AB23 Interconnect VXI Slot-0 Controller with 4 Mbyte Memory

Model V160-BA13 Interconnect VXI Slot-0 Controller with Trigger Line Interface

Model V160-BB13 Interconnect VXI Slot-0 Controller with 1 Mbyte Memory and Trigger Line Interface

Model V160-BB23 Interconnect VXI Slot-0 Controller with 4 Mbyte Memory and Trigger Line Interface

Model V160-0001 4 Mbyte Memory Factory Upgrade Model V160-0002 1 Mbyte Memory Factory Upgrade

Related Products

Model 2961	VME Interconnect Host Adapter
Model 2962	PCI Interconnect Host Adapter
Model 3972	Interconnect CAMAC Crate Controller
Model 5802-Lxyz	Cable—50 μm Fiber-optic
Model 5802-Nxyz	Cable—62.5 µm Fiber-optic
Model 5856-Bxyz	Cable—9S "D" to Unterminated
Model 5919-Z1A	Connector—SMB Cable-type
Model 5930-Z1A	Connector—9S "D"

UNPACKING AND INSTALLATION

The Model V160-xyz3 is shipped in an anti-static bag within a Styrofoam packing container. Carefully remove the module from its anti-static bag and prepare to set the various options to conform to the operating environment.

LOGICAL ADDRESS SWITCHES

The V160-xyz3 is a Slot 0 capable device. It is shipped from the factory configured for Slot 0 operation with its Logical Address Switches statically configured for Logical Address 0. If the V160-xyz3 is to operate as the Slot 0 device, then its Logical Address must be set for Logical Address 0. If it is not, these switches must be set for Logical Address 1 to 255. Logical Address 255 can be shared by multiple devices in a system that supports Dynamic Configuration. If a non-Slot 0 V160-xyz3 is to be used in a system that does not support Dynamic Configuration, or in a system where static configuration of the module is desired, the Logical Address must be manually established. This is accomplished by manipulating the eight rocker switches located under the access hole in the module's right-side ground shield. (Refer to Figure 1.)

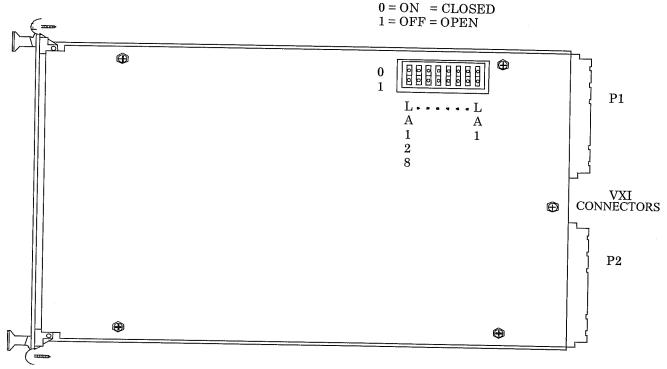


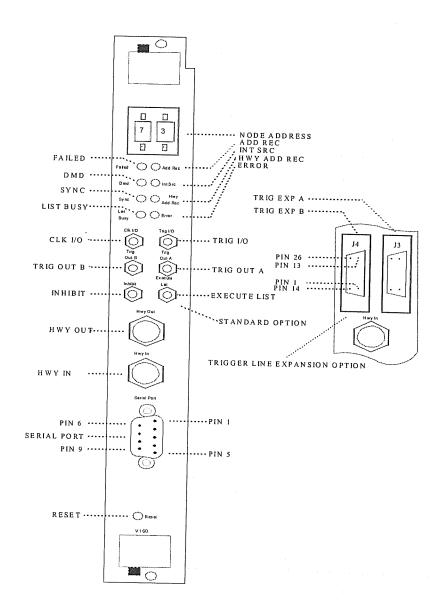
Figure - 1 V160-xyz3 Logical Address Switches

These switches represent a binary combination of numbers that range from zero to 255. Use a scribe or other appropriate instrument to set the Logical Address to the desired value. A switch pushed down on the OPEN side is ON (1). For a Logical Address of zero, all switches should be pushed down on the closed (top as viewed in Figure 1) side.

The Logical Address is used to define the A16 base address of the V160-xyz3's VXIbus defined configuration registers. Further explanation on calculating this base address can be found in the section on VXIbus Configuration Registers.

MODULE INSERTION

Depending on the version of the V160 there are either straps loaded or switches loaded for the configuration of the device.


The V160-xyz3 is a C-sized, single width VXIbus module. This module is shipped from the factory configured for Slot 0 operation. Installing a Slot 0 configured V160-xyz3 in any other slot (other than Slot 0) can result in damage to it and other components in the system. Refer to the section on V160-xyz3 Slot 0 Configuration for more information.

CAUTION: TURN OFF MAINFRAME POWER BEFORE INSERTING OR REMOVING MODULE.

WARNING: REMEMBER TO REMOVE THE INTERRUPT ACKNOWLEDGE AND BUS GRANT DAISY CHAIN JUMPERS BEFORE INSERTING MODULE.

The VXIbus backplane must be properly configured before inserting a module and applying power. The Bus Grant and Interrupt Acknowledge daisy chain jumpers should be installed in any unoccupied slot.

Figure 2 - V160-xyz3 Front Panel Layout

FRONT PANEL INFORMATION

This section describes the connectors, status LEDs, etc. that appear on the front panel and their functions.

NODE ADDRESS SWITCH

The Node Address Switch establishes the V160-xyz3's highway node address. This switch contains two digits in hexadecimal format. Each slave on the highway must have a unique node address, ranging from

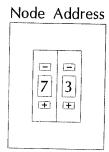


Figure 3 - V160 Node Address Switch

 $1\ (01_{16})$ to $127\ (7F_{16}).$ Node address $0\ (00_{16})$ is reserved and should not be used.

Figure 3 shows the node address switch set to a value of 73_{16} (115). Notice the most significant digit is on the left and the least is on the right.

LEDS

The V160-xyz3 has eight LEDs located on the front panel to display status information. All LEDs are one-shot extended. Table 1 lists each LED and defines when they are active (lighted).

Table 1. Status LED Definitions

Description	
Failed - Onboard DSP is executing or has failed its self-test.	
Address Recognized - Transfer to V160's Configuration Registers was successful.	
Demand - A demand message has been placed in the Demand FIFO.	
Interrupt Source - V160 is generating an interrupt source signal.	
Synchronization - Indicates valid highway activity or synchronization message.	
Highway Address Recognized - V160 recognizes that it is the addressed node.	
List Busy - List Processor is executing instructions from the List Memory.	
Error (R) Error - A parity error has occurred on the highway.	

OPTION SPECIFIC CONNECTORS

The V160-xyz3 has a set of front panel connectors used for clocks and triggers, which differ depending on the option. The V160-Ayz3 has six SMB connectors, while the V160-Byz3 has two 26-pin SCSI II type connectors.

SMB CONNECTOR OPTION

All V160-xyz3 options have front panel mounted SMBs. Table 2 describes the function of each.

Table 2. SMB Connector Descriptions

Description
10 MHz system clock - Can be configured with straps for input or output.
Trigger Input/Output - Configured with straps to route a TTL Trigger Line in/out.
Internal Trigger Output B signal - See Internal Register description.
Internal Trigger Output A signal - See Internal Register description.
Reflects the state of Inhibit bit in the Control/Status Register (Internal Registers).
Input trigger that may be used to start list execution.
3400000

Each of these signals appears on the center pin of the SMB connector. The shell of these connectors is connected to module ground.

TRIGGER EXPANSION CONNECTOR OPTION

V160-Byz3 options have two 26-position SCSI II type socket connectors that replace the SMB connectors and contains some additional signals. This series of options buffers and routes the VXIbus TTL Trigger to these front panel connectors.

Table 3. V160-xyz3 Trigger Expansion Pinouts

1 Tigger Expansion Pinouts					
Trigger Expansion B - J4			Trigger Expansion A - J3		
Pin Description	Pin Number(s)		Pin Description	Pin Number(s)	
TTL Trigger 0 I/O	1		TTL Trigger 0 I/O	1	
TTL Trigger 1 I/O	2		TTL Trigger 1 I/O	2	
TTL Trigger 2 I/O	3		TTL Trigger 2 I/O	3	
TTL Trigger 3 I/O	4		TTL Trigger 3 I/O	4	
TTL Trigger 4 I/O	5		TTL Trigger 4 I/O	5	
TTL Trigger 5 I/O	6		TTL Trigger 5 I/O	6	
TTL Trigger 6 I/O	7		TTL Trigger 6 I/O	7	
TTL Trigger 7 I/O	8		TTL Trigger 7 I/O	8	
CLK10 Input	9		CLK10 Output	9	

Trigger Expansion B - J4			
Pin Description	Pin Number(s)		
*No Connection	10		
*No Connection	11		
Execute List Input	12		
*No Connection	13		
Ground	14-26		

Trigger Expansion A - J3		
Pin Description	Pin Number(s)	
Trigger A Output	10	
Trigger B Output	11	
Execute List Output	12	
Inhibit Output	13	
Ground	14-26	

^{*} No internal connection is made.

Expansion connector part number - AMP 749611-1.

Mating 26 position male cable connector - Honda PCS-XE26M (#28 or #30 AWG discrete wire). Backshell for mating connector - Honda PCS-XE26LA or PCS-XE26LKA.

FIBEROPTIC

The V160-xyz3's two front panel mounted ST type connectors serve as the input and output for the fiberoptic highway. The connector labeled Hwy In is the highway input. This input should be connected to the highway output connector of the driver or another slave. Conversely, the Hwy Out is the output connector and should be connected to a driver or slave highway input connector. Fiberoptic highway connections should be made using $62.5/100\mu m$ fiberoptic cables.

SERIAL PORT

The serial port connector is a 9-position subminiature D type connector with pins. It is used as a general purpose serial interface to the V160-xyz3. For more information on the serial port, see the section on Serial Port Functions. The connector's pinout is shown in Table 4. Any standard 9-position subminiature D type socket connector may be used as a mating connector.

Table 4. Serial Port Connector Pinout

Pin Number	Pin Description		
2	Receive	(RXD*)	
3	Transmit	(TXD*)	
5	Ground	(GND)	
1, 4, 6, 9	No internal connection.		

VXIBUS CONNECTORS

The V160-xyz3 is a C-sized VXIbus module and uses both the P1 and P2 connectors. Tables 5 and 6 list the connections made.

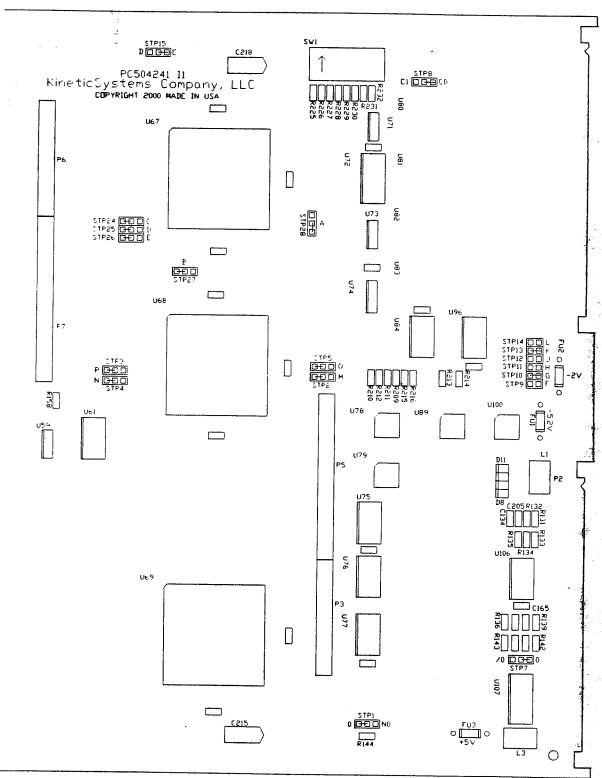

Table 5. VXIbus P1 Connections

Table 5. VXIbus P1 Connections			
Pin	Row A	Row B	Row C
11	D00	BBSY*	D08
2	D01	No Connection	D09
3	D02	No Connection	D10
4	D03	BG0IN*	D11
5	D04	BG0OUT*	D12
6	D05	BG1IN*	D13
7	D06	BG10UT*	D14
8	D07	BG2IN*	D15
9	GND	BG2OUT*	GND
10	SYSCLK	BG3IN*	SYSFAIL*
11	GND	BG3OUT*	BERR*
12	DS1*	BR0*	SYSRESET*
13	DS0*	BR1*	LWORD*
14	WRITE*	BR2*	AM5
15	GND	BR3*	A23
16	DTACK*	AM0	A22
17	GND	AM1	A21
18	AS*	AM2	A20
19	GND	AM3	A19
20	IACK*	GND	A18
21	IACKIN*	No Connection	A17
22	IACKOUT*	No Connection	A16
23	AM4	GND	A15
24	A07	IRQ7*	A14
25	A06	IRQ6*	A13
26	A05	IRQ5*	A12
27	A04	IRQ4*	A11
28	A03	IRQ3*	A10
29	A02	IRQ2*	A09
30	A01	IRQ1*	A08
31	No Connection	No Connection	No Connection
32	+5 V	+5 V	+5V

Table 6. VXIbus P2 Connections

Pin Row A Row B Row C 1 ECLTRG0 +5 V CLK10+ 2 -2 V GND CLK10- 3 ECLTRG1 No Connection GND 4 GND A24 -5.2 V 5 MODID12 A25 LBUSC00 6 MODID11 A26 LBUSC01 7 -5.2 V A27 GND 8 MODID10 A28 LBUSC02 9 MODID09 A29 LBUSC03 10 GND A30 GND 11 MODID08 A31 LBUSC04 12 MODID08 A31 LBUSC05 13 -5.2 V +5 V -2 V 14 MODID06 D16 LBUSC06 15 MODID05 D17 LBUSC07 16 GND D18 GND 17 MODID04 D19 LBUSC08 18 MODID03 D20 LBUSC09	Table 6. VAlbus P2 Connections				
1 ECLTRG0 +5 V CLK10+ 2 -2 V GND CLK10- 3 ECLTRG1 No Connection GND 4 GND A24 -5.2 V 5 MODID12 A25 LBUSC00 6 MODID11 A26 LBUSC01 7 -5.2 V A27 GND 8 MODID10 A28 LBUSC02 9 MODID09 A29 LBUSC03 10 GND A30 GND 11 MODID08 A31 LBUSC03 12 MODID07 GND LBUSC05 13 -5.2 V +5 V -2 V 14 MODID06 D16 LBUSC06 15 MODID05 D17 LBUSC06 15 MODID04 D19 LBUSC08 18 MODID04 D19 LBUSC08 18 MODID03 D20 LBUSC09 19 -5.2 V D21 -5.2 V	Pin	Row A	Row B	Row C	
2 -2 V GND CLK10- 3 ECLTRG1 No Connection GND 4 GND A24 -5.2 V 5 MODID12 A25 LBUSC00 6 MODID11 A26 LBUSC01 7 -5.2 V A27 GND 8 MODID10 A28 LBUSC02 9 MODID09 A29 LBUSC03 10 GND A30 GND 11 MODID08 A31 LBUSC04 12 MODID07 GND LBUSC05 13 -5.2 V +5 V -2 V 14 MODID06 D16 LBUSC06 15 MODID05 D17 LBUSC07 16 GND D18 GND 17 MODID04 D19 LBUSC08 18 MODID03 D20 LBUSC09 19 -5.2 V D21 -5.2 V 20 MODID01 D23 LBUSC10		ECLTRG0	+5 V	CLK10+	
3 ECLTRG1 No Connection GND 4 GND A24 -5.2 V 5 MODID12 A25 LBUSC00 6 MODID11 A26 LBUSC01 7 -5.2 V A27 GND 8 MODID10 A28 LBUSC02 9 MODID09 A29 LBUSC03 10 GND A30 GND 11 MODID08 A31 LBUSC04 12 MODID07 GND LBUSC05 13 -5.2 V +5 V -2 V 14 MODID06 D16 LBUSC06 15 MODID05 D17 LBUSC07 16 GND D18 GND 17 MODID04 D19 LBUSC08 18 MODID03 D20 LBUSC09 19 -5.2 V D21 -5.2 V 20 MODID02 D22 LBUSC10 21 MODID01 D23 LBUSC11 </td <td></td> <td>-2 V</td> <td>GND</td> <td></td>		-2 V	GND		
4 GND A24 -5.2 V 5 MODID12 A25 LBUSC00 6 MODID11 A26 LBUSC01 7 -5.2 V A27 GND 8 MODID10 A28 LBUSC02 9 MODID09 A29 LBUSC03 10 GND A30 GND 11 MODID08 A31 LBUSC04 12 MODID07 GND LBUSC05 13 -5.2 V +5 V -2 V 14 MODID06 D16 LBUSC06 15 MODID05 D17 LBUSC07 16 GND D18 GND 17 MODID04 D19 LBUSC08 18 MODID03 D20 LBUSC09 19 -5.2 V D21 -5.2 V 20 MODID02 D22 LBUSC10 21 MODID01 D23 LBUSC11 22 GND GND GND		ECLTRG1	No Connection		
5 MODID12 A25 LBUSC00 6 MODID11 A26 LBUSC01 7 -5.2 V A27 GND 8 MODID10 A28 LBUSC02 9 MODID09 A29 LBUSC03 10 GND A30 GND 11 MODID08 A31 LBUSC04 12 MODID07 GND LBUSC05 13 -5.2 V +5 V -2 V 14 MODID06 D16 LBUSC06 15 MODID05 D17 LBUSC07 16 GND D18 GND 17 MODID04 D19 LBUSC08 18 MODID03 D20 LBUSC09 19 -5.2 V D21 -5.2 V 20 MODID02 D22 LBUSC10 21 MODID01 D23 LBUSC11 22 GND GND GND 23 TTLTRG0* D24 TTLTRG1*		GND	A24		
6 MODID11 A26 LBUSC01 7 -5.2 V A27 GND 8 MODID10 A28 LBUSC02 9 MODID09 A29 LBUSC03 10 GND A30 GND 11 MODID08 A31 LBUSC04 12 MODID07 GND LBUSC05 13 -5.2 V +5 V -2 V 14 MODID06 D16 LBUSC06 15 MODID05 D17 LBUSC07 16 GND D18 GND 17 MODID04 D19 LBUSC08 18 MODID03 D20 LBUSC09 19 -5.2 V D21 -5.2 V 20 MODID02 D22 LBUSC10 21 MODID01 D23 LBUSC11 22 GND GND GND 23 TTLTRG0* D24 TTLTRG1* 24 TTLTRG2* D25 TTLTRG5* <td></td> <td>MODID12</td> <td>A25</td> <td></td>		MODID12	A25		
7 -5.2 V A27 GND 8 MODID10 A28 LBUSC02 9 MODID09 A29 LBUSC03 10 GND A30 GND 11 MODID08 A31 LBUSC04 12 MODID07 GND LBUSC05 13 -5.2 V +5 V -2 V 14 MODID06 D16 LBUSC06 15 MODID05 D17 LBUSC06 15 MODID05 D17 LBUSC07 16 GND D18 GND 17 MODID04 D19 LBUSC08 18 MODID03 D20 LBUSC09 19 -5.2 V D21 -5.2 V 20 MODID02 D22 LBUSC10 21 MODID01 D23 LBUSC11 22 GND GND GND 23 TTLTRG0* D24 TTLTRG1* 24 TTLTRG2* D25 TTLTRG3* <td></td> <td>MODID11</td> <td>A26</td> <td></td>		MODID11	A26		
8 MODID10 A28 LBUSC02 9 MODID09 A29 LBUSC03 10 GND A30 GND 11 MODID08 A31 LBUSC04 12 MODID07 GND LBUSC05 13 -5.2 V +5 V -2 V 14 MODID06 D16 LBUSC06 15 MODID05 D17 LBUSC06 15 MODID05 D18 GND 16 GND D18 GND 17 MODID04 D19 LBUSC07 18 MODID03 D20 LBUSC08 18 MODID03 D20 LBUSC09 19 -5.2 V D21 -5.2 V 20 MODID02 D22 LBUSC10 21 MODID01 D23 LBUSC11 22 GND GND GND 23 TTLTRG0* D24 TTLTRG1* 24 TTLTRG2* D25 TTLTRG3*<		-5.2 V	A27		
9 MODID09 A29 LBUSC03 10 GND A30 GND 11 MODID08 A31 LBUSC04 12 MODID07 GND LBUSC05 13 -5.2 V +5 V -2 V 14 MODID06 D16 LBUSC06 15 MODID05 D17 LBUSC07 16 GND D18 GND 17 MODID04 D19 LBUSC08 18 MODID03 D20 LBUSC09 19 -5.2 V D21 -5.2 V 20 MODID02 D22 LBUSC10 21 MODID01 D23 LBUSC11 22 GND GND GND 23 TTLTRG0* D24 TTLTRG1* 24 TTLTRG2* D25 TTLTRG3* 25 +5 V D26 GND 26 TTLTRG6* D28 TTLTRG5* 27 TTLTRG6* D28 TTLTRG7	8	MODID10	A28		
10 GND A30 GND 11 MODID08 A31 LBUSC04 12 MODID07 GND LBUSC05 13 -5.2 V +5 V -2 V 14 MODID06 D16 LBUSC06 15 MODID05 D17 LBUSC07 16 GND D18 GND 17 MODID04 D19 LBUSC08 18 MODID03 D20 LBUSC09 19 -5.2 V D21 -5.2 V 20 MODID02 D22 LBUSC10 21 MODID01 D23 LBUSC11 22 GND GND GND 23 TTLTRG0* D24 TTLTRG1* 24 TTLTRG2* D25 TTLTRG3* 25 +5 V D26 GND 26 TTLTRG4* D27 TTLTRG5* 27 TTLTRG6* D28 TTLTRG7* 28 GND No Connection	9	MODID09	A29		
11 MODID08 A31 LBUSC04 12 MODID07 GND LBUSC05 13 -5.2 V +5 V -2 V 14 MODID06 D16 LBUSC06 15 MODID05 D17 LBUSC07 16 GND D18 GND 17 MODID04 D19 LBUSC08 18 MODID03 D20 LBUSC09 19 -5.2 V D21 -5.2 V 20 MODID02 D22 LBUSC10 21 MODID01 D23 LBUSC11 22 GND GND GND 23 TTLTRG0* D24 TTLTRG1* 24 TTLTRG2* D25 TTLTRG3* 25 +5 V D26 GND 26 TTLTRG6* D28 TTLTRG7* 28 GND D29 GND 29 No Connection D30 No Connection 30 MODID00 D31	10	GND	A30		
12 MODID07 GND LBUSC05 13 -5.2 V +5 V -2 V 14 MODID06 D16 LBUSC06 15 MODID05 D17 LBUSC07 16 GND D18 GND 17 MODID04 D19 LBUSC08 18 MODID03 D20 LBUSC09 19 -5.2 V D21 -5.2 V 20 MODID02 D22 LBUSC10 21 MODID01 D23 LBUSC11 22 GND GND GND 23 TTLTRG0* D24 TTLTRG1* 24 TTLTRG2* D25 TTLTRG3* 25 +5 V D26 GND 26 TTLTRG4* D27 TTLTRG5* 27 TTLTRG6* D28 TTLTRG7* 28 GND D29 GND 29 No Connection D30 No Connection 30 MODID00 D31	11	MODID08	A31		
13 -5.2 V +5 V -2 V 14 MODID06 D16 LBUSC06 15 MODID05 D17 LBUSC07 16 GND D18 GND 17 MODID04 D19 LBUSC08 18 MODID03 D20 LBUSC09 19 -5.2 V D21 -5.2 V 20 MODID02 D22 LBUSC10 21 MODID01 D23 LBUSC11 22 GND GND GND 23 TTLTRG0* D24 TTLTRG1* 24 TTLTRG2* D25 TTLTRG3* 25 +5 V D26 GND 26 TTLTRG4* D27 TTLTRG5* 27 TTLTRG6* D28 TTLTRG7* 28 GND D29 GND 29 No Connection D30 No Connection 30 MODID00 D31 GND 31 GND No Connection		MODID07	GND		
14 MODID06 D16 LBUSC06 15 MODID05 D17 LBUSC07 16 GND D18 GND 17 MODID04 D19 LBUSC08 18 MODID03 D20 LBUSC09 19 -5.2 V D21 -5.2 V 20 MODID02 D22 LBUSC10 21 MODID01 D23 LBUSC11 22 GND GND GND 23 TTLTRG0* D24 TTLTRG1* 24 TTLTRG2* D25 TTLTRG3* 25 +5 V D26 GND 26 TTLTRG4* D27 TTLTRG5* 27 TTLTRG6* D28 TTLTRG7* 28 GND D29 GND 29 No Connection D30 No Connection 30 MODID00 D31 GND 31 GND GND No Connection	13	-5.2 V	+5 V		
15 MODID05 D17 LBUSC07 16 GND D18 GND 17 MODID04 D19 LBUSC08 18 MODID03 D20 LBUSC09 19 -5.2 V D21 -5.2 V 20 MODID02 D22 LBUSC10 21 MODID01 D23 LBUSC11 22 GND GND GND 23 TTLTRG0* D24 TTLTRG1* 24 TTLTRG2* D25 TTLTRG3* 25 +5 V D26 GND 26 TTLTRG4* D27 TTLTRG5* 27 TTLTRG6* D28 TTLTRG7* 28 GND D29 GND 29 No Connection D30 No Connection 30 MODID00 D31 GND 31 GND GND No Connection	14	MODID06	D16		
16 GND D18 GND 17 MODID04 D19 LBUSC08 18 MODID03 D20 LBUSC09 19 -5.2 V D21 -5.2 V 20 MODID02 D22 LBUSC10 21 MODID01 D23 LBUSC11 22 GND GND GND 23 TTLTRG0* D24 TTLTRG1* 24 TTLTRG2* D25 TTLTRG3* 25 +5 V D26 GND 26 TTLTRG4* D27 TTLTRG5* 27 TTLTRG6* D28 TTLTRG7* 28 GND D29 GND 29 No Connection D30 No Connection 30 MODID00 D31 GND 31 GND GND No Connection		MODID05	D17		
17 MODID04 D19 LBUSC08 18 MODID03 D20 LBUSC09 19 -5.2 V D21 -5.2 V 20 MODID02 D22 LBUSC10 21 MODID01 D23 LBUSC11 22 GND GND GND 23 TTLTRG0* D24 TTLTRG1* 24 TTLTRG2* D25 TTLTRG3* 25 +5 V D26 GND 26 TTLTRG4* D27 TTLTRG5* 27 TTLTRG6* D28 TTLTRG7* 28 GND D29 GND 29 No Connection D30 No Connection 30 MODID00 D31 GND 31 GND GND No Connection		GND	D18		
18 MODID03 D20 LBUSC09 19 -5.2 V D21 -5.2 V 20 MODID02 D22 LBUSC10 21 MODID01 D23 LBUSC11 22 GND GND GND 23 TTLTRG0* D24 TTLTRG1* 24 TTLTRG2* D25 TTLTRG3* 25 +5 V D26 GND 26 TTLTRG4* D27 TTLTRG5* 27 TTLTRG6* D28 TTLTRG7* 28 GND D29 GND 29 No Connection D30 No Connection 30 MODID00 D31 GND 31 GND GND No Connection		MODID04	D19		
19 -5.2 V D21 -5.2 V 20 MODID02 D22 LBUSC10 21 MODID01 D23 LBUSC11 22 GND GND GND 23 TTLTRG0* D24 TTLTRG1* 24 TTLTRG2* D25 TTLTRG3* 25 +5 V D26 GND 26 TTLTRG4* D27 TTLTRG5* 27 TTLTRG6* D28 TTLTRG7* 28 GND D29 GND 29 No Connection D30 No Connection 30 MODID00 D31 GND 31 GND GND No Connection	***************************************	MODID03	D20		
21 MODID01 D23 LBUSC11 22 GND GND GND 23 TTLTRG0* D24 TTLTRG1* 24 TTLTRG2* D25 TTLTRG3* 25 +5 V D26 GND 26 TTLTRG4* D27 TTLTRG5* 27 TTLTRG6* D28 TTLTRG7* 28 GND D29 GND 29 No Connection D30 No Connection 30 MODID00 D31 GND 31 GND GND No Connection		-5.2 V	D21		
21 MODID01 D23 LBUSC11 22 GND GND GND 23 TTLTRG0* D24 TTLTRG1* 24 TTLTRG2* D25 TTLTRG3* 25 +5 V D26 GND 26 TTLTRG4* D27 TTLTRG5* 27 TTLTRG6* D28 TTLTRG7* 28 GND D29 GND 29 No Connection D30 No Connection 30 MODID00 D31 GND 31 GND GND No Connection		MODID02	D22	LBUSC10	
22 GND GND GND 23 TTLTRG0* D24 TTLTRG1* 24 TTLTRG2* D25 TTLTRG3* 25 +5 V D26 GND 26 TTLTRG4* D27 TTLTRG5* 27 TTLTRG6* D28 TTLTRG7* 28 GND D29 GND 29 No Connection D30 No Connection 30 MODID00 D31 GND 31 GND GND No Connection		MODID01	D23		
24 TTLTRG2* D25 TTLTRG3* 25 +5 V D26 GND 26 TTLTRG4* D27 TTLTRG5* 27 TTLTRG6* D28 TTLTRG7* 28 GND D29 GND 29 No Connection D30 No Connection 30 MODID00 D31 GND 31 GND GND No Connection			GND		
25 +5 V D26 GND 26 TTLTRG4* D27 TTLTRG5* 27 TTLTRG6* D28 TTLTRG7* 28 GND D29 GND 29 No Connection D30 No Connection 30 MODID00 D31 GND 31 GND GND No Connection			D24	TTLTRG1*	
25 +5 V D26 GND 26 TTLTRG4* D27 TTLTRG5* 27 TTLTRG6* D28 TTLTRG7* 28 GND D29 GND 29 No Connection D30 No Connection 30 MODID00 D31 GND 31 GND GND No Connection		TTLTRG2*	D25	TTLTRG3*	
27 TTLTRG6* D28 TTLTRG7* 28 GND D29 GND 29 No Connection D30 No Connection 30 MODID00 D31 GND 31 GND GND No Connection			D26		
27 TTLTRG6* D28 TTLTRG7* 28 GND D29 GND 29 No Connection D30 No Connection 30 MODID00 D31 GND 31 GND GND No Connection			D27	TTLTRG5*	
28 GND D29 GND 29 No Connection D30 No Connection 30 MODID00 D31 GND 31 GND GND No Connection			D28		
30 MODID00 D31 GND 31 GND GND No Connection			D29		
30 MODID00 D31 GND 31 GND GND No Connection			D30	No Connection	
31 GND GND No Connection			D31		
90 NT C			GND		
	32	No Connection	+5 V	No Connection	

Figure 4 - V160 -XY3 Strapping Information

STRAPPING INFORMATION

Figure 4 shows the factory-configured positions for straps A-E and STP 1,8, the TTL Trigger Line and CLK 10 selections, and the SYSRESE. The configuration is as follows:

- 1.) V160-xyz3 is a Slot 0 device.
- 2.) V160-xyz3 is an Interrupt Handler.
- 3.) Bus Request Level is set to 3.
- 4.) Backplane CLK 10 signal is an output on front panel Clk I/O.
- 5.) Positions 1 through 8 on SW1 are pushed down on top (set to zeros) so V160-xyz3 is at Logical Address zero.
- 6.) V160-xyz3 drives backplane Clk10+/-.
- 7.) TTL Trigger Line 0 is routed to front panel Trig I/O as an output.
- 8.) V160-xyz3 has pull-up enabled for Slot 0 MODID line.
- 9.) V160-xyz3 drives the backplane SYSRESET signal.

Table 7. - Strap Configuration

T 1 1	Table 7 Strap Configuration				
Label Reference Designator		Function			
A	STP28	* Arbiter Enable			
В	STP27	* Interrupt Handler			
C	STP24	* Slot 0			
D	STP25				
Е	STP26	Bus Request Level			
F	STP9				
G	STP10				
Н	STP11				
J	STP12				
K	STP13	1.07			
L	STP14	* CLK10 +/-			
M	STP2				
N	STP4	TTL Trigger Line			
Р	STP3				
Q	STP5	TTL Trigger I/O			
/0 0	STP7	* Slot 0 MODID Line Resistor			

Label	Reference Designator	Function	
N0 0 STP1		V160-xyz3 MODID Line	
CI CO	STP8	CLK10 I/O	
DE	STP15	* SYSRESET (System Reset Enable)	

V160-xyz3 Strap Descriptions				
Arbiter Enable	Enables V160-xyz3 to function as the bus arbiter deciding which requester is granted control of the data bus.			
Interrupt Handler	Enables V160-xyz3 to be an Interrupt Handler.			
Slot 0	Enables the V160-xyz3 to be a Slot 0 device.			
Bus Request Level	Specifies the bus request level the V160-xyz3 will use when requesting the data bus.			
CLK10 +/- Configures routing for CLK10 +/- to P2 connector.				
TTL Trigger Line Specifies the TTL trigger line to be used in conjunction front panel Trigger I/O.				
TTL Trigger I/O Determines the direction of the front panel Trigger I/O				
Slot 0 MODID	Enables pull-up resistor connected to V160-xyz3 MODID line when used as a Slot 0 device.			
V160-xyz3 MODID Line Used for testing purposes only. Should remain in the fa configured position to connect the MODID line to the More resistor.				
CLK 10 I/O	Configures front panel CLK10 signal as an input or an output.			
SYSRESET Allows an onboard reset signal to be routed to *SYSRESE on backplane.				

VXIBUS SLOT 0 CONFIGURATION

The V160-xyz3 is shipped from the factory configured for Slot 0 operation. If is to be installed in any other slot, is must be properly configured before installation.

Warning: If the V160-xyz3 is configured for Slot 0 operation, installation in any other slot may result in damage to the V160-xyz3, the Slot 0 device, and the VXIbus backplane.

A VXIbus Slot 0 device functions as the VMEbus System Controller. The System Controller is the VMEbus Arbiter for the data transfer bus. The controller also provides both the 16-MHz system clock (SYSCLK) and system reset (SYSRESET). The Slot 0 Device must also implement a MODID register to monitor and control the VXIbus MODID lines.

V160-XYZ3 SLOT 0 CONFIGURATION

To configure the V160-xyz3 for Slot 0 operation,

- 1. Strap A (STP28) in down position V160-xyz3 is bus arbiter.
- 2. Strap C (STP24) in left position V160-xyz3 is Slot 0 device.
- 3. Strap D E (STP15) in right position V160-xyz3 drives *SYSRESET.
- 4. Strap /0 0 (STP7) in right position Enable Slot 0 MODID pull-up resistor.

To configure the V160-xyz3 for Non-Slot 0 operation,

- 1. Strap A (STP28) in up position V160-xyz3 is not the bus arbiter.
- 2. Strap C (STP24) in right position V160-xyz3 is not a Slot 0 device.
- 3. Strap D E (STP15) in left position V160-xyz3 does not drive *SYSRESET.
- 4. Strap /0 0 (STP7) in left position Disable Slot 0 MODID pull-up resistor.

BUS REQUEST LEVEL

Straps D and E (STP25 and STP26, respectively) are used to specify the VMEbus Request Level the V160-xyz3 uses. Table 8 shows how these straps determine the request level.

Table 8. - Bus Request Level Selections

Strap P	osition	Bus Request Level
Strap D (BR1)	Strap E (BR0)	
Left	Left	Request Level 3
Left	Right	Request Level 2
Right	Left	Request Level 1
Right	Right	Request Level 0

INTERRUPT HANDLER

The Interrupt Handler feature may be defeated by means of a strap on the V160-xyz3. The default configuration is to have the Interrupt Handler enabled - Strap B in the left position. If the Interrupt Handler needs to be disabled, Strap B must be placed in the right position.

TTL TRIGGER I/0

The V160-xyz3 can be configured to route the front panel Trigger I/O to a selected TTL Trigger line or take a selected TTL Trigger Line and route it to the front panel Trigger I/O. Straps M, N, and P are used to select a particular TTL Trigger Line. Strap Q is used to specify the direction of the TTL Trigger Line. When Strap Q is in the left position, the selected TTL Trigger Line is routed out to the front panel Trigger I/O signal. Conversely, the Strap Q in the right position allows the front panel Trigger I/O to source a trigger on the selected line. Table 9 shows how combinations of Straps M, N, and P select the TTL Trigger Line to be used. The left position of these straps is interpreted as a logical 0 and the right as a 1.

Table 9. - I/O TTL Trigger Line Selections

STRAP POSITIONS			
M P (TTL2) (TTL1) (T		N (TTL0)	TTL TRIGGER LINE
Left	Left	Left	7
Left	Left	Right	6
Left	Right	Left	5

STRAP POSITIONS			
M P N (TTL2) (TTL1) (TTL0)		TTL TRIGGER LINE	
Left	Right	Right	4
Right	Left	Left	3
Right	Left	Right	2
Right	Right	Left	1
Right	Right	Right	0

CLK10 SOURCE

As the Slot 0 device, the V160-xyz3 must supply the VXIbus defined differential ECL CLK10 source. This signal may originate from an onboard 10MHz source or from the front panel CLK10 I/O signal. Straps F through L are used to determine if the V160-xyz3 supplies CLK10 and the if the source is from the onboard source or front panel CLK10 I/O signal. Only two shorting straps are supplied for strap locations F through L. When one of these straps is placed in location F, G, or H, the other strap must be in position J, K, or L, respectively. Table 10 defines the only valid combinations that may be used to configure straps F through L. If the front panel CLK10 I/O signal is used as the source, the CI-CO strap must be in the CI (left) position. If the front panel signal is not used as the CLK10 source, the CI-CO strap may be placed in the CO (right) position. This configuration allows the VXIbus CLK10 signal to appear as an output on the V160-xyz3's front panel CLK10 I/O signal, regardless of which slot the V160-xyz3 is installed.

Table 10. CLK10 Configurations

rable 10. CERTO Configurations				
Straps Installed in:	Function:			
F and J	V160-xyz3 is source for VXIbus CLK10 from front panel CLK10 L signal.			
G and K V160-xyz3 is source for VXIbus CLK10 from onboard 10Mh				
H and L V160-xyz3 is not the source for VXIbus CLK10.				

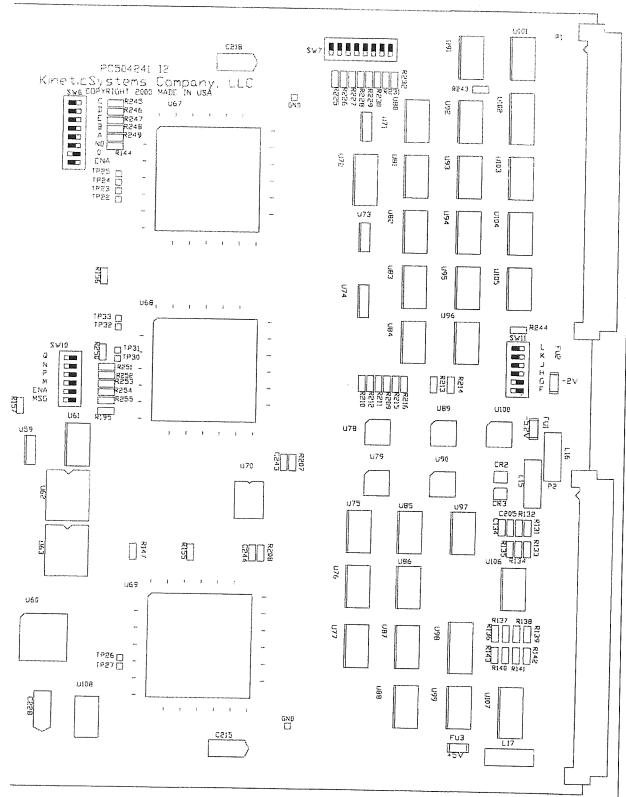


Figure 5 - V160 Switching View

The V160 is factory configured as shown.

- Switch C
 Switch D
 Left
 Switch E
 Left
 Switch A
 Switch B
 Switch B
 Switch O
- 1. V160 drives backplane CLK 10±.
- 2. TTL Trigger Line 0 is routed to front panel Trig I/O as an output.
- 3. V260 has pullup enabled for Slot 0 MODID line.

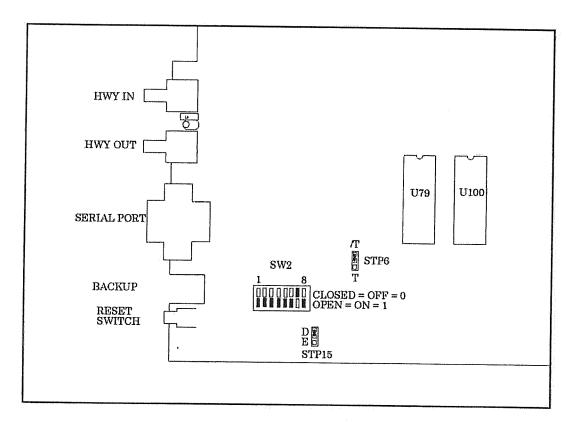


Figure 6 Switch Setting 3

Figure 6 shows the factory switch setting 3 for the SYSRESET and emulator switch. This configuration allows the V160 to drive the backplane SYSRESET signal.

Table 11 - Switch Configuration

		- Switch Configuration
Label	Reference Designator	Function
A	SW6 POS 5	*Arbiter Enable
В	SW6 POS 4	*Interrupt Handler
C	SW6 POS 1	*Slot 0
D	SW6 POS 2	
E	SW6 POS 3	Bus Request Level
F	SW11 POS 1	
G	SW11 POS 2	
Н	SW11 POS 3	
J	SW11 POS 4	*CLK 10 ±
K	SW11 POS 5	
L	SW11 POS 6	
M	SW10 POS 4	
N	SW10 POS 2	TTL Trigger Line
P	SW10 POS 3	
Q	SW10 POS 1	TTL Trigger I/O
/0 0	SW6 POS 7	*Slot 0 MODID Line Resistor
/0 0	SW6 PO6	V160 MODID Line
CI C0	SW11 POS 5	Factory Configuration - DO NOT MOVE CLK 10 I/O
L	SW11 POS 6	*SYSRESET (System Reset Enable)
ENA	SW10 POS 5	Returns IRQ Level of Interrupter Returns Logical Address of Interrupter

SWITCH DESCRIPTIONS

Arbiter Enable Enables V160 to function as the bus arbiter deciding which requester is granted control of the data bus.

granted control of the data bus.

Interrupt Handler Enables V160 to be an Interrupt Handler.

Slot 0 Enables the V160 to be a Slot 0 device.

Bus Request Level Specifies the bus request level the V160 will use when requesting the data

bus.

CLK 10± Configures routing for CLK 10± to P2 connector.

TTL Trigger Line Specifies the TTL trigger line to be used in conjunction with the front panel

Trigger I/O.

TTL Trigger I/O Determines the direction of the front panel Trigger I/O.

Slot 0 MODID Enables pullup resistor connected to V160 MODID line when used as a Slot 0

device.

V160 MODID Line Used for testing purposes only. Should remain in the factory configured

position to connect the MODID line to the MODID resistor.

DSP Emulator Allows use of emulator in place of DSP. This strap must remain in its factory

configured position for proper operation.

CLK 10 I/O Configures front panel CLK 10 signal as an input or an output.

SYSRESET Allows an onboard reset signal to be routed to *SYSRESET signal on

backplane.

Model V160-xyz3 V160 SLOT 0 CONFIGURATION

To configure the V160 for Slot 0 operation:

1.	Switch 6 A	in left position – V160 is bus arbiter.
2.	Switch 6 C	in left position – V160 is Slot 0 device.
3.	Switch 11 L	in left position – V160 drives *SYSRESET.
4.	Switch 6 0	in right position – Enable Slot 0 MODID pullup resistor.

To configure the V160 for Non Slot 0 operation:

5.	Switch 6 A	in right position $-V160$ is not the bus arbiter.
6.	Switch 6 C	in right position – V160 is not a Slot 0 device.
7.	Switch 11 L	in right position – V160 doe not drive *SYSRESET.
8.	Switch 6 0	in left position – Disable Slot 0 MODID pullup resistor.

BUS REQUEST LEVEL

Switch $6~\mathrm{D}$ and E are used to specify the VMEbus Request Level the V160 uses. The following table shows how these switches determine the request level.

Table 12 - Bus Request Level Selection

Switch	Switch Position				
Switch 6 D	Switch 6 E	Bus Request Level			
Left	Left	Request Level 3			
Right	Left	Request Level 2			
Left	Right	Request Level 1			
Right	Right	Request Level 0			

INTERRUPT HANDLER

The Interrupt Handler feature may be defeated by means of a switch on the V160. The default configuration is to have the Interrupt Handler enabled – Switch 6 D in the left position. If the Interrupt Handler needs to be disabled, Switch 6 E must be placed in the right position.

TTL TRIGGER I/O

The V160 can be configured to route the front panel Trigger I/O to a selected TTL Trigger line or take a selected TTL Trigger Line and route it to the front panel Trigger I/O. Switches D and E are used to select a particular TTL Trigger Line. Switch N0 0 is used to specify the direction of the TTL Trigger Line. When Switch 6 E is in the left position, the selected TTL Trigger Line is routed out to the front panel Trigger I/O signal. Conversely, the Switch 6 E in the right position allows the front panel Trigger I/O to source a trigger on the selected line. The following table shows how combinations of Switch 6 D and E select the TTL Trigger Line to be used. The left position of these switches is interpreted as a logical 0 and the right as a 1.

Table 13 I/O TTL Trigger Line Selection

	Switch 10 Positi	on	2 Bille Sciection
M	N	P	TTL Trigger Line
(TTL2)	(TTL1)	(TTL0)	Inggot Enic
Left	Left	Left	0
Left	Left	Right	1
Left	Right	Left	2
Left	Right	Right	3
Right	Left	Left	4
Right	Left	Right	5
Right	Right	Left	6
Right	Right	Right	7

CLK 10 SOURCE

As the Slot 0 device, the V160 must supply the VXIbus defined differential ECL CLK 10 source. This signal may originate from an onboard 10MHz source or from the front panel CLK 10 I/O signal. Switch 11 F through K are used to determine if the V160 supplies CLK 10 and if the source is from the onboard source or front panel CLK 10 I/O signal. Only two shorting straps are supplied for strap locations F through L. When one of these straps is placed in location F, G, or H, the other switch must be in position J, IK, or L, respectively. The following table defines the only valid combinations that may be used to configure Switch 11 F through K. If the front panel CLK 10 I/O signal is used as the CI-CO switch must be in the CI (left) position. If the front panel signal is not used as the CLK 10 source, the CI-CO switch may be placed in the CO (right) position. This configuration allows the VXIbus CLK 10 signal to appear as an output on the V160's front panel CLK 10 I/O signal, regardless of which slot the V160 is installed.

Table 14 CLK 10 Configurations

Switch 11	Function
F and J	V160 is source for VXIbus CLK 10 from front panel CLK 10 I/O signal.
G and K	V160 is source for VXIbus CLK 10 from onboard 10 MHz source.
H and L	V160 is not the source for VXIbus CLK 10.

Model V160-xyz3 PROGRAMMING INFORMATION

VMEBUS/VXIBUS ADDRESSING

Of the defined VXIbus Configuration Registers, The V160-xyz3 implements those required for extended register-based devices. The V160-xyz3 does not contain any registers located in A24 or A32 address space.

Access to the Configuration Registers for all VXI*bus* modules is available through the VMEbus short address space. The register addresses are located in the upper 16 kilobytes of the A16 address range (C000₁₆ to FFFF₁₆). The setting of the Logical Address switch, or the contents of the Logical Address Register (see below) are mapped into Address lines A6 through A13, thereby establishing a base address for the module somewhere in the range of C000₁₆ to FFC0₁₆.

A16 BASE ADDRESS

The bit pattern for the A16 base address is shown below:

15	14	13	12	11	10	9	8	7	6	5	4	7	2	4	^
A 15	A 14	A 13	A 12	A 11	A 10	A 09	A 08	A 07	A 06	A 05	A 04	A 03	A 02	A	U
1	1	LA 128	LA 64	LA 32	LA 16	LA 8	LA 4	LA 2	LA 1	0	0	0	0	0	0

Bits 15 through 1 correspond to the VME address lines A15-A01.

Bits 15 and 14 are set to one (VXI defined).

Bits 13 through 6 are user selectable via the Logical Address switches and the ID/Logical Address register.

Bits 5 through zero are set to zero to indicate a block of 64 bytes.

VXIBUS CONFIGURATION REGISTERS

Configuration Registers are required by the VXIbus specification so that the appropriate levels of system configuration can be accomplished. The Configuration Registers in the V160-xyz3 are offset from the base address. Note: the V160-xyz3 only responds to these addresses if the Short Nonpriviledged Access (2916) or Short Supervisory Access (2D16) Address Modifier Codes are set for the VMEbus cycle. Table 11 shows the applicable Configuration Registers present in the V160-xyz3, their offset from the base (Logical) address, and their Read/Write capabilities.

Table 15. Configuration Registers Configuration (A16) Space

		egisters Configuration (A16) Space						
A16 Offset	Write/Read	Register Name						
0016	Write/Read	ID/Logical Address Register						
0216	Read Only	Device Type Register						
0416	Write/Read	Status/Control Register						
0616	N/A	Reserved						
0816	Write/Read *	Attribute / MODID Register *						
$0A_{16}$	Read Only	Serial Number High Register						
$0\mathrm{C}_{16}$	Read Only	Serial Number Low Register						
$0\mathrm{E}_{16}$	Read Only	Version Number Register						
10 ₁₆ - 19 ₁₆	Read Only	Reserved Registers						
1A ₁₆	Read Only	Interrupt Status Register						
$1\mathrm{C}_{16}$	Write/Read	Interrupt Control Register						
$1\mathrm{E}_{16}$	Read Only	Subclass Register						
2016	Read Only	Suffix Register High						
22_{16}	Read Only	Suffix Register Low						
24 ₁₆ - 3F ₁₆	N/A	Reserved						

^{*} If the V160-xyz3 is configured as a Slot 0 Controller, the register at offset 08_{16} is the write/read MODID register. For non-Slot 0 configurations, the register at offset 08_{16} is the read-only Attribute register.

ID/LOGICAL ADDRESS REGISTER (OFFSET 0016

The ID/Logical Address Register, which is located at offset 00_{16} from the logical base address, serves two functions, depending on the direction of the VME transfer. When executing a read operation to this register, the data returned indicates the Device Class, the Address Space requirements outside of A16 space, and the Manufacturer's Identification. A write operation to this register is only executed during a dynamic configuration sequence. During the configuration sequence, the Resource Manager assigns a logical address to the V160-xyz3 by writing the logical address into the lower 8-bits of this register. The format and bit assignments for this ID/Logical Address register are shown in the following diagram. Since this register has write-only and read-only bits, two bit patterns are shown.

On Read transactions:

ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	1	1	1	1	1	1	1	0	0	1	0	1	0	0	1

Bit(s) Mnemonic Meaning

15, 14 Device Class This is an Extended Register Based device

13,12 Address Space The V160-xyz3 does not require A24/A32 addressment space.

11-0 Manufacturer's ID 3881 (F29₁₆) for KineticSystems.

On Write transactions:

15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Not	Used				LA 128	LA 64	LA 32	LA 16	LA 08	LA 04	LA 02	LA 01

For Write transfers to offset 00_{16} of the V160-xyz3, bits 15 through 08 are not used. A write to these bits has no effect on the V160-xyz3. In Dynamically Configured Systems (i.e., the Logical Address switches were set to a value of 255), bits 07 through 00 are written with the new Logical Address value. This write operation is typically executed by a Resource Manager.

DEVICE TYPE REGISTER (OFFSET 0216)

The Device Type Register is a read-only register located at an offset of 02_{16} from the logical base address. This register contains the Model Code of the V160-xyz3. Since the V160-xyz3 is an A16-only device, the entire 16 bits of this register are used for the Model Code.

Model Codes for VXI Slot 0 devices must be in the range of 00_{16} to FF₁₆. Model Codes for VXI non-Slot 0 devices must be in the range of 100_{16} to FFFF₁₆. When the V160-xyz3 is configured for non-Slot 0

functionality, the Model Code returned when reading this register is 160_{16} . To follow the VXI specification for Model Codes, the 100_{16} bit is set to zero when the V160-xyz3 is configured for Slot 0 operation.

V160-xyz3 Model Codes:

160₁₆ for non-Slot 0 Operation 060₁₆ for Slot 0 Operation

The following diagram shows the bit pattern of the Device Type Register for both Slot 0 and non-Slot 0 configurations.

For Slot 0 configurations:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	

For non-Slot 0 configurations:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	n	
0	0	0	0	0	0	0	1	0	1	1	0	0	0	0	0	

STATUS/CONTROL REGISTER (OFFSET 0416

The Status/Control Register, which is located at an offset of 04_{16} from the logical base address, contains write-only, read-only, and write/read bits. The following describes the bits for write and read operations.

This bit pattern shows the register layout for read accesses to the Status/Control Register.

On Read transactions:

15_	14	13	12	11	10	9	8	7	6	5	4	3	2	1	n
0	MOD I D *	1	1	1	1	1	1	1	1	1	1	Read y	Pass	SYS INB	Soft Rese t

Bit(s)	$\underline{\text{Mnemonic}}$	Meaning
15	Not Used	This bit is not used and should be written as a zero.
14	MODID*	This bit is set to a one if the module is <u>not</u> selected with the MODID line on the VXI P2 connector. A zero indicates that the device is selected by a high state on the P2 MODID line.

Model V160-x	:y z 3	
13-4	Not Used	These bits are not used and read as ones.
3	Ready	READY is a read-only bit that is set to a one indicating successful completion of register initialization.
2	Pass	Pass is a read-only bit that is set to a one after the V160-xyz3 has completed its power-on self-test without any errors. If errors occur, this bit is set to a zero and the SYSFAIL signal is asserted.
1	SYS INB	Reading this bit as a one indicates that the V160-xyz3 is may not drive the SYSFAIL* line.
0	Soft Reset	This write/read bit is used to reset the V160-xyz3. Reading this bit as a one indicates that the V160-xyz3 is currently in the RESET state. Setting this bit to a zero removes the V160-xyz3 from the RESET state.

This bit pattern shows the register layout for write accesses to the Status/Control Register.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Not	Used							SYS	Soft
L													INB	Reset	

Bit(s)	Mnemonic	Meaning
15-2	Not Used	These bits are not used for write operations.
1	SYS INB	SYSFAIL INHIBIT is a write-only bit that is set to a one to inhibit the V160-xyz3 from asserting the VXI SYSFAIL* signal.
0	Soft Reset	This write/read bit used to reset the V160-xyz3. Reading this bit as a one indicates that the V160-xyz3 is currently in the RESET state. Setting this bit to a zero removes the V160-xyz3 from the RESET state.

ATTRIBUTE REGISTER (OFFSET 0816

The Attribute Register is located at an offset of 08_{16} from the logical base address. This register is only available when the V160-xyz3 is configured as a non-Slot 0 device. When the V160-xyz3 is configured for Slot 0 operation, the Attribute Register is replaced with the MODID (Module Identification) Register. Refer to the MODID Register section of this manual for additional information.

The Attribute Register is a read-only register that contains information regarding the interrupt capabilities of the V160-xyz3.

The format of the Attribute Register is shown in the following diagram.

15	14		12										2	1	0	
1	1	1	1	1	1	1	1	1	1	1	1	1	IR*	IH*	IS*	-

Bit(s)	Mnemonic	Meaning
15-3	Not Used	These bits are not used and read as ones.
2	IR*	The V160-xyz3 has interrupter control capabilities and returns this bit set to zero.
1	IH*	The V160-xyz3 has interrupt handling capabilities and returns this bit set to zero. $$
0	IS*	The V160-xyz3 has interrupt status capabilities and returns this bit set to zero.

MODID REGISTER (OFFSET 0816)

The MODID Register is located at an offset of 08_{16} from the logical base address. This register is only available when the V160-xyz3 is configured as a Slot 0 device. When the V160-xyz3 is configured for non-Slot 0 operation, the MODID Register is replaced with the Attribute Register. Refer to the Attribute Register section of this manual for additional information.

The MODID Register is a write/read register used to control the MODID geographic addressing lines on the VXI P2 connector. Each of the 13 slots in the VXI chassis has an individual line that can be asserted and monitored through the MODID Register. Before any MODID lines can be asserted by the V160-xyz3, the Output Enable bit (bit 13) of the register must be set to a one. When the outputs are enabled, setting a MODID bit location to a one asserts the associated MODID signal.

The data read from the MODID bits in this register do not necessarily reflect the state of the bits that were written to this register. Instead, a read of this register returns the actual state of each MODID line.

The following diagram shows the bit pattern for the MODID Register.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	MODID Enabl e	MID 12	MID 11	MID 10	MID 9	MID 8	MID 7	MID 6	MID 5	MID 4	MID 3	MID 2	MID 1	MID 0

Bit(s)	Mnemonic	Meaning
15,14	Not Used	These bits are not used and read as ones.

13 MODID Enable

OUTPUT ENABLE is a write/read bit used to enable or disable the V160-xyz3 from driving the MODID signals. Setting this bit

to a one enables the drivers and a zero disables them.

12-0 MID12-0

MODULE ID 12 through 0 are write/read bits used to assert and monitor the MODID signals. Writing a bit with a one will assert (as indicated by a high state) the corresponding slot's MODID line.

SERIAL NUMBER HIGH REGISTER (OFFSET $0A_{16}$

The Serial Number High Register, which is located at an offset of $0A_{16}$ from the logical base address, is used in combination with the Serial Number Low Register to define the serial number of the V160-xyz3 module. These registers are read-only and a write operation to these registers has no effect.

The format of the Serial Number High Register is shown in the following diagram.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
SN 31	SN 30	SN 29	SN 28	SN 27	SN 26	SN 25	SN 24	SN 23	SN 22	SN 21	SN 20	SN 19	SN 18	SN 17	SN 16	

Bit(s) Mnemonic Meaning

SERIAL NUMBER 31 through 16 are read-only bits which represent the upper 16-bits of the 32-bit module serial number. These bits are used in conjunction with the bits SN15-SN00 in the Serial Number Low register.

SERIAL NUMBER LOW REGISTER (OFFSET $0C_{16}$

The Serial Number Low Register, which is located at an offset of $0C_{16}$ from the logical base address, is used in combination with the Serial Number High Register to define the serial number of the V160-xyz3 module. These registers are read-only and a write operation to these registers has no effect.

The format of the Serial Number Low Register is shown in the following diagram.

	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
S 1		SN 14	SN 13	SN 12	SN 11	SN 10	SN 09	SN 08	SN 07	SN 06	SN 05	SN 04	SN 03	SN 02	SN 01	SN 00	

$\underline{\mathrm{Bit}(\mathrm{s})}$	$\underline{\text{Mnemonic}}$	Meaning
15-0	SN15-0	SERIAL NUMBER15 through 0 are read-only bits which represent the lower 16-bits of the 32-bit module serial number. These bits are used

in conjunction with the bits SN31-SN16 in the Serial Number High register.

VERSION NUMBER REGISTER (OFFSET 0E16

The Version Number Register, which is located at an offset of $0E_{16}$ from the logical base address, is a read-only register that reflects the current revision level of the hardware and firmware residing on the V160-xyz3. All write operations to this register are ignored.

The following shows the bit layout of the Version Number Register.

15	j	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Firmware Version Firmware Revision					Н	ardware	Versio	n	н	ardware	Revisi	on			
									JL				1			

Bit(s)	Mnemonic	Meaning
15-12	Firmware Version	These bits reflect the module's firmware main revision level.
11-8	Firmware Revision	These bits reflect the module's firmware revision number.
7-4	Hardware Version	These bits reflect the module's firmware main revision number.
3-0	Hardware Revision	These bits reflect the module's firmware revision number.

INTERRUPT STATUS REGISTER (OFFSET 1A₁₆

The Interrupt Status Register is a 16-bit read-only register located at an offset of $1A_{16}$ from the logical base address. This register is enabled onto the VMEbus during interrupt acknowledge cycles. The register contains the logical address of the V160-xyz3 in the lower 8-bits of the register and the upper 8-bits indicates the cause/status of the interrupt. Since the V160-xyz3 only has one interrupt source, the cause/status bits are always read as zero.

The format of the Interrupt Status Register is as follows:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	LA 128	LA 64	LA 32	LA 16	LA 8	LA 4	LA 2	LA 1
F	irmware	Versio	'n	F	irmware	Revisio	on	н	ardware	· Versio	n	На	ardware	Revisio	on

Bit(s)	$\underline{\text{Mnemonic}}$	Meaning
15-8	Cause/Status	These bits are always returned as zeros.
7-0	LA128-LA1	These bits return the current logical address of the V160-xyz3.

INTERRUPT CONTROL REGISTER (OFFSET $1C_{16}$

The Interrupt Control Register, which is located at offset $1C_{16}$ from the logical base address, is a write/read register used to configure the V160-xyz3 for interrupt generation. The Interrupt Request Level and Interrupt Enable bit are located in this register.

The format and description of the bits in the Interrupt Control Register are shown in the following diagram.

ı	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	1	1	1	1	1	1	1	1	IR EN*	1	IRQ S3	IRQ S2	IRQ S1	1	1	1	

Bit(s)	Mnemonic	Meaning
15-8	Not Used	These bits are not used and read as ones.
7	IREN*	INTERRUPT REQUEST ENABLE is a write/read bit used to enable/disable the generation of an interrupt by the V160-xyz3. Setting this bit to a zero enables the V160-xyz3 to interrupt and a one disables all interrupts.
6	Not Used	This bit is not used and read as a one.
5-3	IRQS3-IRQS1	INTERRUPT REQUEST SELECT 3 through 1 are write/read bits used to select the desired Interrupt Request Level that the V160-xyz3 asserts when an interrupt is sourced. The following shows the Interrupt Request Level selections.

IRQS3	IRQS2	IRQS1	Interrupt Request Level			
0	0	0	IRQ7			
0	0	1	IRQ6			
0	1	0	IRQ5			
0	1	1	IRQ4			
1	0	0	IRQ3			
1	0	1	IRQ2			
1	1	0	IRQ1			
1	1	1	IRQ0			

2-0 Not Used

These bits are not used and read as ones.

SUBCLASS REGISTER (OFFSET 1E₁₆)

The Subclass Register, which is located at an offset of $1E_{16}$ from the logical base address, is a read-only register that indicates the subclass of the V160-xyz3. The V160-xyz3 is an Extended Register Based Device as the following pattern indicates.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	

Bit(s)	Meaning
15	This bit is set to a one indicating that this is a VXIbus extended device.
14-0	These bits are set of $7FFE_{16}$ which indicates that the V160-xyz3 is an Extended Register Based Device.

SUFFIX HIGH REGISTER (OFFSET 2016)

The Suffix High register, which is located at an offset of 20₁₆ from the logical base address, is a read-only register used in combination with the Suffix Low Register to determine the module model number suffix. The Suffix High Register contains the first two ASCII characters of the suffix and the Suffix Low Register contains the second two characters. The suffix shown is for the V160-xyz3-ZA11 module.

The format and bit assignments for the Suffix High Register are as follows:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	1	0	1	1	0	1	0	0	1	0	0	0	0	0	1	

This read only register contains the first two ACSII characters of the module's suffix ("ZA" = $5A41_{16}$).

SUFFIX LOW REGISTER (OFFSET 2216)

The Suffix Low register, which is located at an offset of 22_{16} from the logical base address, is a read-only register used in combination with the Suffix High Register to determine the module model number suffix. The Suffix Low Register contains the last two ASCII characters of the suffix and the Suffix High Register contains the first two characters. The suffix shown is for the V160-xyz3-ZA11 module.

The format and bit assignments for the Suffix Low Register are as follows:

15	14 14	13	3 12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	1

This read only register contains the last two ACSII characters of the module's suffix ("11" = 4141_{16}).

V160-XYZ3 INTERNAL REGISTER DESCRIPTION

All accesses to the V160-xyz3 internal registers must be 32-bit accesses, even if the register is less than 32-bits in width. Table 12 shows the address allocations of the various internal registers on the V160-xyz3.

Table 16. Internal Registers

Address Location(Base 16) Access Capabilities Register Name												
Address Location(Base 16)	Access Capabilities	Register Name										
00	Write/Read	Control/Status Register (CSR)										
04	Write Only	Burst Count Register (BCT)										
08	Write Only	Delay Count Register (DCT)										
0C	Read Only	Total Transfer Count Register (TTCR)										
10	Read Only	List Transfer Count Register (LTCR)										
14	Read Only	Demand FIFO Register (DFR)										
18-1C	N/A	Reserved										
20	Write Only	Trigger Source Register (TSR)										
24	Write Only	Broadcast Trigger Mask (BTMSK)										
28-2C	N/A	Reserved										
30	Write/Read	List Memory Address Register (LMA)										
34	Write/Read	List Memory Data Register (LMD)										
38	Write Only	Execute List (LGO)										
3C	Write Only	List Trigger Register (LTG)										
40	Write/Read	List Write/Read Data Register (LWRD)										
44-4C	N/A	Reserved										
50	Write Only	Timer Control Register (TCR)										
54	Write Only	Timer Data Register (TDR)										

15

14

13

Address Location(Base 16)	Access Capabilities	Register Name					
58-7C	N/A	Reserved					
<80>	Write/Read	Multibuffer Memory Address	(MBMA)				
<84>	Read Only	Multibuffer Data Register	(MBMD)				
<88>	Write/Read	Multibuffer Control Register	(MBMC)				
<8C>	Write/Read	Buffer Interval Counter	(BIC)				
<90>	Write/Read	Buffer End Address	(BEA)				

<>- Only applicable for models with buffer memory option.

CONTROL/STATUS REGISTER (CSR) (00 $_{16}$)

12

The Control/Status Register (CSR) is located at address 00_{16} . This write/read register is used to control and monitor various operations within the V160-xyz3.

	• • •		14.	T	10	9	8		6	5	4	3	2	1	0
STS PAS	TMR ENA	LST BSY	DMD OFL	DMD CLR	DMD PND	DMD ENA	MBM D	INT DEN	MBM Ena	DLY Ena	BST ENA	INH	SYS FAL	RD SFL	SYS RST
Bit(s	<u>Mn</u>	<u>iemoni</u>	<u>c</u> <u>1</u>	<u>Meanin</u>	g										
15	STS	SPAS	T b	The Self y the V	f-Test I 7160-xy	Passed vz3 pas	is a rea ses, ar	ad-only ad set t	bit is s o a zer	set to a o wher	one wl n it fail	nen the s.	self-te	st exec	uted
14	TMI	R ENA	V	imer E 160-xy mer ex	zə. 1n	s a wri e time	te/read r can b	l bit us e used	ed to er to exec	nable/d cute a l	isable i ist or s	the tim ource a	er fund trigge	ction or r wher	the the
List Busy is a read-only bit that is set to a one as long a executing a list operation.													the V1	.60-xyz	3 is
and a second of that is set to a one as long a								alaarad	on nor		1				
11												nts of ce it is	the set.		
10	DMI) PND	pr	Demand Pending is a read-only bit that is set to a one as long as a demand stored in the Demand FIFO. This bit is cleared as long as no demands as present, after power-up, and after a write to the CSR with the DMD CLR bit so to a one.											
9	DME	ENA	De	emand	Enable	is a w	rite/rea	d bit w	hich is	used to	o enabl	e/disab	le the g	generat	ion

Mode	el V160-xyz3	
		of highway demand messages when the Demand FIFO contains data.
8	MBM DEN	Multibuffer Memory Demand Enable is a write/read bit used to enable or disable the storage of a demand entry in the Demand FIFO when the multibuffer memory reaches a programmable pointer. Setting this bit to a one enables the demand and a zero disables it.
7	INT DEN	Interrupt Demand Enable is a write/read bit used to enable or disable the storage of a demand entry in the Demand FIFO when a VXI interrupt occurs. Setting this bit to a one enables the demand and a zero disables it.
6	MBM ENA	Multibuffer Memory Enable is a write/read bit used to enable the multibuffer memory option for the V160-xyz3. Setting this bit to a one enables the memory and a zero disables it.
5	DLY ENA	Delay Enable is a write/read bit used to enable/disable the programmable delay associated with the receipt of broadcast trigger messages. Setting this bit to a zero disables the delay and a one enables it.
4	BST ENA	Burst Enable is a write/read bit used to enable/disable burst mode transfers on the VXI bus. Setting this bit to a one enables a DMA burst transfer of up to 256 transfers without relinquishing control of the VXI bus. Setting this bit to a zero disables this feature.
3	INH	Inhibit is a write/read bit used to source the front panel INHIBIT signal.
2	SYS FAL	SYSFAIL is a write/read bit used to control the VXI bus SYSFAIL signal. Setting this bit to a one asserts the signal, and unasserted when the bit is set to zero.
1	RD SFL	Read SYSFAIL is a read-only bit that reflects the current state of the VXI bus SYSFAIL signal.
0	SYS RST	System Reset is a write-only bit that is used to source the VXI bus SYSRESET signal. Setting this bit to a one asserts the SYSRESET signal. This bit is not latched.

BURST COUNT REGISTER (BCT) (04 $_{16}$)

The Burst Count Register (BCT) is a write-only register located at address 04₁₆. This register is used to specify the maximum number of transfers the V160-xyz3 may execute on the VXI bus without relinquishing control of the VXI bus. This specification allows for up to 256 transfers without renegotiation. To enable burst transfers, the BST ENA bit in the Control/Status Register must be set to a one prior to DMA operations.

The following diagram shows the bit pattern for the Burst Count Register.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Not	Used				ВСТ 7	вст 6	ВСТ 5	BCT 4	BCT 3	BCT 2	ВСТ 1	BCT O

Bit(s) Mnemonic Meaning

15-8 Not Used These bits are not used.

7-0 BCT7-0 Burst Count 7 through 0 specify the number of DMA transfers the V160-xyz3 may execute before relinquishing control of the VXI bus during a DMA operation.

DELAY COUNT REGISTER (DCT) (0816)

The Delay Count Register is a write-only register located at address 08_{16} within the V160-xyz3. This register is used to specify a delay count associated with the receipt of a Broadcast Trigger command from the Interconnect Highway. Once the trigger command is received from the highway, the delay counter starts counting down until it underflows. When the count is exhausted, the contents of the Broadcast Trigger Register is used to source the corresponding signals. The delay count is enabled with the DLY ENA bit in the Control/Status Register. If the delay is not enabled in the CSR, the contents of the Broadcast Trigger Register are used immediately to source the corresponding signals.

The delay count specification is the number of 200 nanoseconds intervals to wait before sourcing the broadcast trigger data. This allows for a delay specification in the range of 200 nanoseconds to 13.1 milliseconds in 200 nanosecond increments.

There is a minimum delay time within the V160-xyz3 before the broadcast trigger data is sourced. This time is XX nanoseconds. Therefore, to calculate the time from receipt of the Broadcast Trigger message until the actual broadcast, data source is as follows:

Time = (xx nanoseconds) + (Delay Count X 200 nanoseconds)

The following diagram shows the bit pattern for the Delay Count Register.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DCT															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit(s) Mnemonic

Meaning

15-0 DCT15-0

Delay Count 15 through 0 specify the amount of time to wait after receiving a Broadcast Trigger message until the Broadcast Trigger Mask Register data is sourced. This specification is the number of 200 nanosecond increments.

TOTAL TRANSFER COUNT REGISTER (TTCR) (0 C_{16})

The Total Transfer Count Register is a read-only register located at address $0C_{16}$ within the V160-xyz3.

This register is used to verify the number of valid transfers that have occurred during a requested operation. If an error occurs during a requested operation, this register may then be read to determine the actual number of valid transfers before the error occurred. This value is the two's complement of number of words remaining to be transferred. This may then be subtracted from the original value to determine the valid transfer count.

The TTCR is originally loaded with the transfer count value that is received from the command message. As DMA transfers occur, this counter is incremented and DMA operations continue until the TTCR is exhausted.

The following diagram shows the bit pattern for the Total Transfer Count Register (TTCR).

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
TCR	TCR	TCR	TCR	TCR	TCR										
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TCR	TCR5	TCR	TCR	TCR	TCR	TCR									
15	14	13	12	11	10	9	8	7	6		4	3	2	1	0

Bit(s) Mnemonic Meaning

31-0 TCR31-0

Total Transfer Count 31 through 0 specify the total number of transfers remaining to be performed by the V160-xyz3. This data is in two's complement format.

LIST TRANSFER COUNT REGISTER (LTCR) (1016)

The List Transfer Count Register is a read-only register located at address 10₁₆ within the V160-xyz3. This register is used to verify the number of valid transfers that have occurred during a list block transfer operation. If an error occurs during a list block transfer operation, this register may be read to determine the actual number of valid transfers before the error occurred. This value is the two's complement of number of words remaining to be transferred. This may then be subtracted from the original value to determine the valid transfer count.

The LTCR is originally loaded with the transfer count value that is contained in the transfer count specification for the block instruction in the list. As DMA transfers occur, this counter is incremented and DMA operations continue until the LTCR is exhausted.

The following diagram shows the bit pattern for the List Transfer Count Register (LTCR).

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
LCR	LCR	LCR	LCR												
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LCR	LCR3	LCR	LCR	LCR											
15	14	13	12	11	10	9	8	7	6	5	4		2	1	0

Bit(s) Mnemonic Meaning

31-0 LCR31-0 List Transfer Count 31 through 0 specify the number of transfers remaining to be performed by the V160-xyz3. This data is in two's complement format.

DEMAND FIFO REGISTER (DFR) (1416)

The Demand FIFO Register is a read-only register located at address 14₁₆ in the V160-xyz3. This register is a FIFO capable of "holding" 2048 demand entries. These entries are generated by either VXI interrupts or by the Multibuffer Memory option. If the INT DEN bit in the Control/Status Register (CSR) is enabled, each interrupt event on the VXI bus is stored in the Demand FIFO. If the MBM DEN bit in the CSR is enabled, the Demand FIFO is written with a pattern indicating that the multibuffer memory has encountered a buffer segment crossing.

Demand entries are stored in the FIFO until they are either read by the host computer or sent out onto the Interconnect Highway as Demand messages. If the DMD ENA bit in the CSR is set to zero the V160-xyz3 does not generate any demand messages but continues to store demand events as they occur.

As long as there is at least one demand stored in the Demand FIFO, the DMD PND bit in the CSR is set to a one. If the Demand FIFO contains 2048 and one additional demand occurs, the data is not stored and the DMD OFL bit in the CSR is set. The Demand Overflow bits (DMD OFL) is not reset when the FIFO becomes less than full. A write operation to the CSR with the DMD CLR bit set to a one clears the FIFO and the overflow condition.

When a demand source is entered from an interrupt source, the data that is written into the FIFO is the actual interrupt request level. For example, data = 1 corresponds to interrupt request level 1; data = 6 corresponds to interrupt request level 6. Data from 1 to 7 represents demand sources generated from VXI interrupts. Data equal to 8 is received when the demand source is from the multibuffer memory card.

The following diagram shows the bit pattern for the Demand FIFO Register.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
					Not	Used						DSC 3	DSC 2	DSC 1	DSC 0	

Bit(s)MnemonicMeaning15-4Not UsedThese bits are not used.3-0DSC3-0Demand Source 3 through 0 reflect the source of the demand.

The following chart shows the valid demand sources and the corresponding data values.

DSC 3	DSC 2	DSC 1	DSC 0	Demand Source
0	0	0	0	Reserved
0	0	0	1	Interrupt Request Level 1
0	0	1	0	Interrupt Request Level 2
0	0	1	1	Interrupt Request Level 3
0	1	0	0	Interrupt Request Level 4
0	1	0	1	Interrupt Request Level 5
0	1	1	0	Interrupt Request Level 6
0	1	1	1	Interrupt Request Level 7
1	0	0	0	Multi Buffer Memory

TRIGGER SOURCE REGISTER (TSRC) (2016)

The Trigger Source Register is a write-only register located at internal address 2016. This register is used to source any of the following signals:

- 1.) VXI TTL Trigger lines 0 through 7.
- 2.) VXI ECL Trigger lines 0 and 1.
- 3.) Front Panel Trigger Out B and A.
- 4.) Execute List.
- 5.) Reset Time Stamp.

A 200 nanosecond pulse is applied to each signal when its corresponding bit in the Trigger Source Register is written to a one. The following diagram shows the bit pattern for the Trigger Source Register.

15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Not	RST	LST	FP	FP	ECL	ECL	TTL								
Used	TSP	GO	TGB	TGA	1	0	7	6	5	4	3	2	1	0	

Bit(s) Mnemonic Meaning

15-14 Not Used These bits are not used.

13 RST TSP Reset Time Stamp is set to clear the Time Stamp Counters.

15

14

13

12

12	LST GO	List Go is set to a one to trigger a list processing operation.
11	FP TGB	Front Panel Trigger Out B is set to a one to source the front panel trigger out B.
10	FP TGA	Front Panel Trigger Out A is set to a one to source the front panel trigger out A.
9-8	ECL1-0	The ECL1 and ECL0 bits are set to a one to source a trigger on the VXI trigger lines ECL1 and ECL0.
7-0	TTL7-0	The TTL7 through TTL0 bits are set to a 1 to assert the VXI trigger lines TTL7 through TTL0.

BROADCAST TRIGGER MASK REGISTER (BTMSK) (2416)

The Broadcast Trigger Mask Register is a write-only register that is located at internal address 24₁₆ on the V160-xyz3. This register is used to specify the signal to be sourced when a Broadcast Trigger message is received by the V160-xyz3.

A Grand Interconnect host may issue a Broadcast Trigger message that informs all chassis connected to the highway to assert the data contained in the Broadcast Trigger Mask Register. On the V160-xyz3, this data contains VXI TTL/ECL triggers, the two front panel triggers, an execute list bit, and a reset time stamp bit.

Associated with the Broadcast Trigger mechanism is the Delay Timer. The Delay Timer, if enabled, causes the V160-xyz3 to delay the assertion of the Broadcast Trigger Mask Register until a predetermined interval of time elapses. The delay data is loaded in the Delay Count Register.

The following diagram shows the bit pattern for the Broadcast Trigger Mask Register.

		·-	· -	,		,		/	- 6	5	4	3	2	1	0
No	Used	RST TSP	LST GO	FP TGB	FP TGA	ECL 1	ECL 0	TTL 7	TTL 6	TTL 5	TTL 4	TTL 3	TTL 2	TTL 1	TTL 0
Bit(s)	<u>Mne</u>	monic	Me	aning											
15-14	Not U	Jsed	Th	ese bita	s are n	ot used	l.								
13	RST	TSP	Res	set Tim	ie Stan	np is se	et to cl	ear the	Time	Stamp	Count	ers.			
12	LST (GO	Lis	t Go is	set to	a one t	o trigg	er a lis	t proce	essing (perati	on.			
11	FP TO	ЗB	Fro	nt Pan	el Trig	ger Ou	t B is s	set to a	one to	source	the fro	nt pan	el trigg	ger out	В.
10	FP TO	GA	Fro	nt Pan	el Trig	ger Ou	t A is s	et to a	one to	source	the fro	nt pan	el trigg	ger out	A.
9-8	ECL1	-0	The ECL1 and ECL0 bits are set to a one to source a trigger on the VXI trigger lines ECL1 and ECL0.												

7-0 TTL7-0

The TTL7 through TTL0 bits are set to a 1 to assert the VXI trigger lines TTL7 through TTL0.

LIST MEMORY ADDRESS REGISTER (LMA) (3016)

The List Memory Address Register is a write/read register located at address 30₁₆ on the V160-xyz3. This register is used to set the list memory address prior to writing to or reading from the 32K X 32 List Memory Data Register. Before writing or reading the list memory, a write operation to the LMA is executed to establish the initial address for storing/retrieving list memory data. After the address is loaded, the List Memory Data Register (LMD) may then be accessed. After a write or read operation to the LMD, the List Memory Address is automatically incremented.

The LMA is also used for specifying the initial address at which list processing starts.

The most significant bit in this register may be used to initiate a list operation when set to a one. The following diagram shows the bit pattern for the List Memory Address Register.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
XEQ LST	LMA 14	LMA 13	LMA 12	LMA 11	LMA 10	LMA 9	LMA 8	LMA 7	LMA 6	LMA 5	LMA 4	LMA 3	LMA 2	LMA 1	LMA O	

Bit(s) Mnemonic Meaning

15 XEQ LST

Execute is a write-only bit that initiates a list processing operation.

14-0 LMA14-0

List Memory Address 14 through 0 specify the list memory address location to access.

LIST MEMORY DATA REGISTER (LMD) (3416)

The List Memory Data Register is a write/read register located at internal address 34₁₆. This register allows access to the 32K X 32 list processing memory. This memory is loaded prior to list execution with the VXI commands (instructions) to be executed.

Before a write or read operation is executed to this register, the List Memory Address (LMA) register should be loaded with the initial address location to access. After a write or read operation to the LMD, the LMA is automatically incremented to the next address location. This allows for sequential access to the list memory without the need of reloading the LMA for each access.

The following diagram shows the bit pattern of the List Memory Data Register.

1	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	LMD															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16

Mod	lel V16	60-xyz3	3													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
LMD 15	LMD 14	LMD 13	LMD 12	LMD 11	LMD 10	LMD 9	LMD 8	LMD 7	LMD 6	LMD 5	LMD 4	LMD 3	LMD 2	LMD 1	LMD 0	

$\underline{\mathrm{Bit}(\mathrm{s})}$	$\underline{\text{Mnemonic}}$	Meaning
--	-------------------------------	---------

31-0 LMD31-0

List Memory Data 31 through 0 are write/read bits that represent the data for list execution.

LIST GO (LGO) (3816)

The List Go is an internal address at location 38_{16} . A write operation with any data pattern initiates list execution. This function is useful when it is necessary to execute a list operation that does not require any data transfers.

LIST TRIGGER REGISTER (LTRG) (3C₁₆)

The List Trigger Register is a write-only internal register located at address $3C_{16}$. This register allows the selection of VXI triggers or the occurrence of an interrupt to initiate list execution. The following diagram shows the bit pattern of the List Trigger Register.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
				Not	Used					LTG ENA	SEL 4	SEL 3	SEL 2	SEL 1	SEL 0	

Bit(s)	<u>Mnemonic</u>	Meaning
15-6	Not Used	These bits are not used.
5	LTG ENA	List Trigger Enable is used to enable/disable list execution on the occurrence of an interrupt or VXI trigger. Setting this bit to a one enables the function and a zero disables it.
4-0	SEL4-0	Select 4 through 0 select the source of the list trigger. The following chart shows the valid combinations of these bits and the trigger source that they select.

SEL 4	SEL 3	SEL 2	SEL 1	SEL 0	List Trigger Source
0	0	0	0	0	TTL Trigger 0
0	0	0	0	1	TTL Trigger 1
0	0	0	1	0	TTL Trigger 2
0	0	0	1	1	TTL Trigger 3
0	0	1	0	0	TTL Trigger 4
0	0	1	0	1	TTL Trigger 5
0	0	1	1	0	TTL Trigger 6
0	0	1	1	1	TTL Trigger 7
0	1	0	0	0	ECL Trigger 0
0	1	0	0	1	ECL Trigger 1
0	1	0	1	0	
		through			
0	1	1	1	1	Reserved
1	0	0	0	0	Interrupt Request 1
1	0	0	0	1	Interrupt Request 2
1	0	0	1	0	Interrupt Request 3
1	0	0	1	1	Interrupt Request 4
1	0	1	0	0	Interrupt Request 5
1	0	1	0	1	Interrupt Request 6
1	0	1	1	0	Interrupt Request 7

LIST WRITE/READ DATA REGISTER (LWRD) (40_{16})

The List Write/Read Data Register is located at internal address 40₁₆. This address is used to transfer data to/from the V160-xyz3 during list processing operations. When a write or read to this register is executed, the list processing sequence is initiated. If a write list was specified, the command to this register must be a write operation. Conversely, if a read list was specified, the command to this register must be a read.

Model V160-xyz3 TIMER CONTROL REGISTER (TCR) (50₁₆)

The Timer Control Register is located at internal address 50₁₆. This write-only register is used to specify what signals are to be asserted once the timer has expired. The timer is a 32-bit counter with 100 nanosecond resolution, which yields a range of 500 nanoseconds to 429.5 seconds. After the timer is loaded through the Timer Data Register and enabled in the Control/Status Register, the timer counts down until an underflow occurs. When this occurs, the contents of the Timer Control Register are asserted and the timer is reloaded.

Upon timer expiration, the V160-xyz3 can assert VXI triggers, front panel trigger, or initiate list execution. The following diagram shows the bit pattern for the Timer Control Register.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	ot ied	RST TSP	LST GO	FP TGB	FP TGA	ECL 1	ECL 0	TTL 7	TTL 6	TTL 5	TTL 4	TTL 3	TTL 2	TTL 1	TTL 0
Rit(e)	Mn	omonic	. 7. /		_										

Bit(s)	<u>Mnemonic</u>	Meaning
15-14	Not Used	These bits are not used.
13	RST TSP	Reset Time Stamp is set to clear the Time Stamp Counters.
12	LST GO	List Go is set to a one to trigger a list processing operation.
11	FP TGB	Front Panel Trigger Out B is set to a one to source the front panel trigger out B.
10	FP TGA	Front Panel Trigger Out A is set to a one to source the front panel trigger out A.
9-8	ECL1-0	The ECL1 and ECL0 bits are set to a one to source a trigger on the VXI trigger lines ECL1 and ECL0.
7-0	TTL7-0	The TTL7 through TTL0 bits are set to a 1 to assert the VXI trigger lines TTL7 through TTL0.

TIMER DATA REGISTER (TDR) (5416)

The Timer Data Register is located at internal address 54₁₆. This write-only register is used to specify the timer interval used for sourcing the VXI triggers, front panel triggers, or initiating list operations. This register is composed of a 32-bit counter that is clocked by a 10 MHz clock. The allowable range for the timer is 500 nanoseconds to 429.5 seconds in 100 nanosecond increments. After the timer is enabled in the Control/Status Register, the timer counts down until it underflows. When the timer expires, the data contained in the Timer Control Register is sourced, and then the timer is reloaded.

The following diagram shows the bit pattern for the Timer Data Register.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
DR 31	TDR 30	TDR 29	TDR 28	TDR 27	TDR 26	TDR 25	TDR 24	TDR 23	TDR 22	TDR 21	TDR 20	TDR 19	TDR 18	TDR 17	TDR 16	

Mode	el~V160)-xyz3													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TDR 15	TDR 14	TDR 13	TDR 12	TDR 11	TDR 10	TDR 9	TDR 8	TDR 7	TDR 6	TDR 5	TDR 4	TDR 3	TDR 2	TDR 1	TDR 0

Bit(s) Mnemonic Meaning

31-0 TDR31-0 Timer Data 31 through 0 are used to specify the timer interval used to source the signals contained in the Timer Control Register.

The following registers are applicable only on models that include the Multi-Buffer Memory option.

MULTI-BUFFER MEMORY ADDRESS REGISTER (MBMA) (8016)

The Multi-Buffer Memory Address register is located at an internal offset of 80₁₆. This write/read register is used to specify the address within the buffer to be read. To read a buffer location, this register must first be written with the address of the desired location. The contents of this buffer location may then be obtained be reading the Multi-Buffer Memory Data Register (MBMD). When the MBMD is read, the MBMA register is incremented allowing the next successive location to be read. This permits reads of successive locations without having to specify the address each time the data is read.

The MBMA contains twenty write/read bits to specify the desired location. The bits will select one of the possible 1,048,576 (1Meg) locations. Note: The 1Mbyte model will only contain 262,144 (256K) valid locations.

Refer to the Multibuffered Data Acquisition section of this manual for additional information.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Not	Used						MBM A19	MBM A18	MBM A17	MBM A16

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
MBM	MBM	MBM	MMB	MBM												
A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	AO	

Bit(s) Mnemonic Meaning

31-20 Not Used These bits are not used and are always read as zeros.

19-00 MBMA 19-0 Multi-Buffer memory address bits. Specify the address for the desired location within the buffer. Bits 19 and 18 (MBM A19 and MBM A18) are used on the 4 Mbyte buffer model only.

Model V160-xyz3 MULTI-BUFFER MEMORY DATA REGISTER (MBMD) (8416)

The Multi-Buffer Memory Data Register is a read only location at 8416. The buffer memory is used to store the read data the V160-xyz3 receives from DMA accesses. During DMA read operations, the V160xyz3 may either store the read data in a FIFO or the buffer memory. The buffer memory allows storage of a large number of read operations (up to 1M) before the buffer fills and data must be read.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MBM															
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MBM															
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO

Bit(s) Mnemonic Meaning

15

15-6

17

Not Used

31-0 MBMD31-0 Multi-Buffer memory data.

MULTI-BUFFER MEMORY CONTROL REGISTER (MBMC) (8816)

This write/read register is located at an internal address of 8816. This register is used to monitor and clear the flags associated with the multi-buffer memory.

The flags in this register are set as the Buffer Interval Counter (BIC) expires. The BIC is decremented as each DMA operation is executed by the V160-xyz3. When the BIC is exhausted, the next sequential flag (beginning with FLG 1) is set. As the fourth flag is set, the next expiration of the BIC causes the first flag to be set. Once a flag has been set, the overrun flag will be set if the BIC expires on the set flag. The overrun flag is an indication that data will be lost when data is overwritten by subsequent transfers.

This register also contains a feature to clear flags automatically as the buffer is read. The CLR ENA bit is used to enable this feature. When one of the buffer flags (FLG 4-1) is set, the host can then read this section of the buffer, clearing the flag. This allows flags to be cleared without the need for a write operation. When flags are to be cleared in this manner, a read operation of buffer data should have a transfer count equal to the individual buffer size.

	17 13	14 11	10		 7	6	5	4	3	2	1	0
		Not	Used				CLR ENA	OVR RUN	FLG 4	FLG 3	FLG 2	FLG 1
Bit(s)	Mnemonic	Meanii	<u>1g</u>									

These bits are not used and are read as zeros. 5 Flag clear enable is used a read/write bit used to automatically clear a flag bit CLR ENA with each read of a MBM buffer.

Model	V160-xyz3
-------	-----------

4 OVR RUN

MBM Overrun flag is a read/clear bit which is used to signify an overflow condition. This bit is set whenever the V160-xyz3 needs to set a multibuffer flag and the flag is already set. This indicates a buffer of data is being overwritten before the host could read the buffer and clear the flag. A write operation with this bit set to a one causes the overflow condition to be cleared.

3-0 FLG4-0

MBM flags 1-4 are read/clear bits set sequentially as the Buffer Interval Counter expires during multibuffer data acquisition. A write operation to a flag bit with data set to a one clears the flag. These flags may also be cleared by setting the Clear Enable bit (above) and reading the MBM data register.

BUFFER INTERVAL COUNTER (BIC) (8C₁₆)

The Buffer Interval Counter (BIC) is a write/read register located at internal address of 8C₁₆. This counter is used to define the number of DMA transfers placed into each buffer. One to four buffers of equal size may be defined; the size of the buffer(s) dependent on the contents of this register and the Buffer End Address. The individual buffer size can be calculated using the following relationship:

Individual Buffer Size = [(Buffer End Address + 1) \div (Number of Desired Buffers)]

Notice that the individual buffer size is the same as what should be placed in the BIC. For example, a total of 64 DMA transfers are to be shared between two buffers. The Buffer End Address should be one less than the total number of transfers $(63 = 3F_{16})$. The individual buffer size becomes:

Individual Buffer Size = $(64 \div 2) = 20_{16}$.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Not	Used						BIC 19	BIC 18	BIC 17	BIC 16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BIC 15	BIC 14	BIC 13	BIC 12	BIC 11	BIC 10	B1C 9	BIC 8	BIC 7	BIC 6	BIC 5	BIC 4	BIC 3	BIC 2	BIC 1	BIC 0

Bit(s) Mnemonic Meaning

31-20 Not Used These bits are not used and always read as zeros.

19-0 BIC 19-0 Buffer interval count 19-0 are read/write bits that define the number of DMA read transfers the V160-xyz3 executes before a multibuffer flag is set.

BUFFER END ADDRESS (BEA) (9016)

The Buffer End Address is a write/read register located at offset 90_{16} . This register is used to define the address at which an internal counter is cleared. This internal counter is the pointer the V160-xyz3 uses to place read data into the multibuffer memory. Clearing this counter places the address pointer at the beginning of the first buffer.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Not	Used	····					BEA 19	BEA 18	BEA 17	BEA 16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BEA 15	BEA 14	BEA 13	BEA 12	BEA 11	BEA 10	BEA 9	BEA 8	BEA 7	BEA 6	BEA 5	BEA 4	BEA 3	BEA 2	BEA 1	BEA 0

Bit(s)	$\underline{\text{Mnemonic}}$	Meaning
31-20	Not Used	These bits are not used and are always read as zeros.
19-0	BEA 19-0	Buffer end address 19-0 is write read bits which define the total buffer size the V160-xyz3 uses when storing DMA read data. As the internal address pointer to the MBM reaches the Buffer End Address, it is cleared, allowing it to point to the beginning of the first buffer.

SPECIAL HIGHWAY INSTRUCTIONS

Currently, two special instructions initiated by the Interconnect Driver are implemented on the V160-xyz3. Both of these commands are trigger instructions. For more information on the capabilities of these instructions, see the description of the Trigger Source and Broadcast Trigger Mask registers in the section on Internal Registers. The following chart shows the special instructions implemented by the V160-xyz3. The hex data shown corresponds to the first 16-bit word of the special instruction (header).

Special Instruction (hex)	Function
8040	Addressed Slave Trigger
8041	Broadcast Trigger

ADDRESSED SLAVE TRIGGER INSTRUCTION

The Addressed Slave Trigger instruction has an opcode of 8040 hex and is used to initiate a trigger at an addressed slave. The data sent to the addressed slave is contained in the list instruction. The addressed slave takes the write data and strobes it into the Trigger Source Register. Refer to the Internal Register Description section for further information on the Trigger Source Register.

The following is the format of the Addressed Slave Trigger instruction.

First Longword:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0	0	NDA 64	NDA 32	NDA 16	NDA 8	NDA 4	NDA 2	NDA 1
											<u> </u>	1	1	I.	
15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
					<u> </u>										

NODE ADDRESS 64 through 1 specifies the node address to be accessed.

Second Longword:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
												1			
15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
TD 15	TD 14	TD 13	TD 12	TD 11	TD 10	TD 9	TD 8	TD 7	TD 6	TD 5	TD 4	TD 3	TD 2	TD 1	TD 0

TRIGGER DATA 15 through 0 is the data to be written into the addressed slave Trigger Source Register.

BROADCAST TRIGGER INSTRUCTION

The Broadcast Trigger Instruction has an opcode of 8041 hex and is used to generate a Broadcast Trigger Message on the highway. This message is received by all slave devices on the highway. Once a slave device receives this message, it takes the data preloaded in the Broadcast Trigger Mask Register and applies the data to the Trigger Source Register. Any bit that is set to a one in the Broadcast Trigger Mask Register causes the corresponding local trigger to be asserted. Refer to the Internal Register Description section for further information on the Broadcast Trigger Mask Register.

The following shows the format of the Broadcast Trigger instruction.

First Longword:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	T _n	0
15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	
- 1	1	1					<u>"T</u>					11 05	7 02	01	00
1	0	0	0	0	0	0	0	0	1	0	0	0	0		1, 1

Second Longword:

31	30	29	28	27		25	24		22	21	20	19	18	17	16
0	0	0	0	0	0	0	0	0	0	0		0	10	To	
15	14	13	12				8			5		7		1	
0	0	0	0	0						T,	T	<u> </u>	Τ.		T
L-	1 0	10	1 0	<u> </u>	10	10	<u> </u>	0	0] 0	0	0	0	0	0

LIST PROCESSING INSTRUCTION FORMATS

The V160-xyz3 may perform a variety of operations as directed, through its list memory. This $32K\ X$ 32 bit memory used to hold the list processing instructions to be executed by the hardware list processor or the DSP. The list memory is typically loaded over the highway using the V160-xyz3's Internal Registers. The list of commands can contain instructions for data transfers or special instructions.

When list processing is initiated, the hardware list processor examines the header of the first list instruction. If the header indicates the instruction is to perform a data transfer within the VXI chassis, the hardware list processor reads the next successive list location(s) to obtain the necessary information for the data transfer. After the transaction is complete, the list processor increments the Command Memory Address and the next instruction is interpreted.

If the hardware list processor encounters a "special" instruction, one that does not require a highway operation, the DSP is enabled. The DSP then executes the special instruction and continues processing until a HALT instruction is found or another data transfer is requested.

The format for list processing instructions is similar to what the driver uses for highway commands. Some parameters, such as node address, are not relevant for list processing instructions and are not used. The first 16-bit word the V160-xyz3 encounters in the list memory is referred to as the instruction header. The following diagram shows the format of the list processing instruction header.

í	15 	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	
	CM 1	CM O			١	Not Used	d t			TM 2	TM 1	AM 2	AM 1	WS 2	WS 1	AD	
														_		i	1

Bits 15 and 14 of the instruction header specify the type of instruction as follows:

CM1	СМ0	Instruction Type
0	0	Reserved
0	1	VXI/VME Instruction
1	0	Special Instruction
1	1	Reserved

As shown above, VME/VXI and Special Instructions are the only valid types of list processing instructions. Other instruction types are reserved and should not be used.

The definitions of the remaining bits in the instruction header vary depending on the type of command. The next two sections fully define bits 6 through 0 of the instruction header.

Subsequent words in a command instruction are dependent on the command type. For example, VXI/VME headers are followed by the 32-bit VME address.

VXI/VME INSTRUCTIONS

For all VXI/VME instructions, the instruction header has bits 15 set to a zero and bit 14 set to a one. Bits 13 through 7 are not used. Other bits in this word define the Transfer Mode, Access Mode, and Data Word Size. The following diagram shows the instruction header for VXI/VME instructions.

r	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	0	1	0	0	0	0	0	0	0	TM 2	TM 1	AM 2	AM 1	WS 2	WS 1	AD	

Bits 15 must be set to a zero and bit 14 to a one.

Bits 13 through 7 are set to zeros.

Bits 6 and 5 are the Transfer Mode bits and specify the VXI/VME transfer protocol as follows:

TM2	TM1	Transfer Mode
0	0	Single Operation
0	1	Block Transfer Operation
1	0	Single Inline Write Operation
1	1	Reserved

The Single Operation Transfer Mode simply transfers one data word to/from the VXI/VME chassis for the specified VXI/VME command. These operations may include write or read operations. Data for write operations is provided through the List Write/Read Data Register. This register must be written with the write data for the operation. Data obtained from read operations will be placed in the Multi-Buffer Memory or the List Write/Read Data Register. If Multi-Buffer is not enabled, the read data must be read from the List Write/Read Data Register.

Block Transfer Operations move blocks of data to/from a VXI/VME chassis for each block instruction. The number of data words to transfer during Block Transfer operations are found in additional words accompanying this instruction. These operations may include either VXI/VME write or read operations. The data paths for Block Transfers are identical to those for Single Operations. Block Write operations use data provided through the List Write/Read Register. Block Read operations funnel data to the Multi-Buffer Memory or the List Write/Read Data Register. Typically, large blocks of data should be placed into the buffer memory. This allows the driver to take large blocks of data over the highway without the VME transfer overhead.

Single Inline Write Operations are single transfer VXI/VME write operations that have the write data embedded in the list. Since the write data is included in the list, this operation does not need to wait for the driver to supply the data. These commands are useful for initializing modules and also allow VXI/VME write operations to occur in a read command list.

The Access Mode bits, AM2 and AM1, specify the access method to be used during the requested transfer. This mode concerns the addressing of the VXI/VME chassis. After the initial VXI/VME transfer is executed during block transfers, the address may be either incremented or left the same for subsequent transfers of the block. The Access Modes provided are as follows.

AM2	AM1	Access Mode
0	0	Increment Address
0	1	Reserved
1	0	Address Unchanged
	1	Reserved

The Word Size bits, WS2 and WS1, are used to specify the size of the VXI/VME data word accessed in the addressed chassis. The following chart shows the available VXI/VME data word size selections.

WS2	WS1	Data Word Size
0	О	32-Bits
0	1	Reserved
1	0	16-Bits
1	1	8-Bits

The last bit in the instruction header, ABORT DISABLE, is used to enable or disable the termination of an operation when a VXI Timeout is encountered. Setting this bit to a one allows an operation to run to completion without regard to the bus timeouts. Setting this bit to a zero causes an operation to terminate when a bus error occurs.

The second 16-bit word for VXI/VME instructions contains the VME Address Modifier, a bit indicating the direction of the transfer (write or read). The following diagram shows the second instruction word for VXI/VME instructions.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
0	DIR	0	0	0	0	0	0	0	0	AMD 5	AMD 4	AMD 3	AMD 2	AMD 1	AMD 0	

Bit 31 is normally used as the Internal Bit. List processing instructions may \underline{not} access the V160-xyz3's Internal Registers. This bit must be set to a zero.

The DIRECTION bit, bit 30, is used to define the direction of the transfer. When DIRECTION is set to zero, the direction of the transfer is from the V160-xyz3 to the VXI/VME chassis (write operations). This bit is set to a one for transferring data from the VXI/VME address to the V160-xyz3 (read operations). Bits 29 through 22 are not used and must be set to zeros.

The ADDRESS MODIFIER bits, AMD5 through AMD0, specify the VME address modifier used for the VXI/VME bus cycle. The following chart is a subset of the VME address modifiers.

Address Modifier Data (Hex)	Function
3F	Standard (A24) Supervisory Block Transfer
3E	Standard (A24) Supervisory Program Access
3D	Standard (A24) Supervisory Data Access
3B	Standard (A24) Nonprivleged Block Transfer
3A	Standard (A24) Nonprivleged Program Access

Address Modifier Data (Hex)	Function
39	Standard (A24) Nonprivleged Data Access
2D	Short (A16) Supervisory Access
29	Short (A16) Nonprivleged Access
0F	Extended (A32) Supervisory Block Transfer
0E	Extended (A32) Supervisory Program Access
0D	Extended (A32) Supervisory Data Access
0B	Extended (A32) Nonprivleged Block Transfer
0A	Extended (A32) Nonprivleged Program Access
09	Extended (A32) Nonprivleged Data Access

The next longword (32-bits) of any VXI/VME instruction is the physical address. The following diagram shows the bit pattern for the 2nd longword of a VXI/VME instruction.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
A 31	A 30	A 29	A 28	A 27	A 26	A 25	A 24	A 23	A 22	A 21	A 20	A 19	A 18	A 17	A 16
15	14	13	12	11	10	09	08	07	0/	0.5			I	<u> </u>	<u></u>
								1 07	06	05	04	03	02	01	00
A 15	A 14	A 13	A 12	A 11	A 10	A 9	A 8	A 7	A 6	A 5	A 4	A 3	A 2	A 1	A 0

VXI/VME SINGLE TRANSFER INSTRUCTIONS

The Header Word, Address Modifier, and Address specification are common for all VXI/VME instructions. For VXI/VME Single Operations, this is the only data required. For each Single Transfer instruction encountered, only one VME/VXI transfer will be executed by the V160-xyz3. The direction of the transfer is controlled by the DIRECTION bit. To transfer multiple data words to/from a VXI/VME chassis with one instruction, the VXI/VME Block Transfer instruction must be used.

The following diagram shows the composite format for the VXI/VME Single Operation instruction.

First Longword of Instruction:

ſ	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	0	DIR	0	0	0	0	0	0	0	0	AMD 5	AMD 4	AMD 3	AMD 2	AMD 1	AMD 0
											*		'			L
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	1	0	0	0	0	0	0	0	0	0	AM	AM	WS	WS	AD
L			L		<u></u>	L		L				2	1	2	1	

Second Longword of Instruction:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	
A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A 0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	

For example, a single write operation is to be made to an address located within a VXI chassis and:

Direction VME/VXI Address

DIR A31-0 = 0 (A write operation is needed.)

Address Modifier

AMD5-0

= 20000040₁₆ (Address to be written.) = 09₁₆ (A32 Nonpriviledged Data Access)

Word Size Access Mode

WS2-1 AM2-1

= 2 (16-bit transfer)

= 0 (Not used for single reads/writes.)

Abort Disable

AD

= 0 (Abort on VXI timeout.)

The format for this example instruction is shown below. The write data for this operation must be written to the List Write/Read Data Register.

First Longword of Instruction:

r	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	0	DIR	0	0	0	0	0	0	0	0	AMD 5	AMD 4	AMD	AMD 2	AMD 1	AMD O
	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1

15	1 V 160	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	0	0	0	0	0	0	0	0	AM 2	AM 1	WS 2	WS 1	AD
0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0

Second Longword of Instruction:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
A 31	A 30	A 29	A 28	A 27	A 26	A 25	A 24	A 23	A 22	A 21	A 20	A 19	A 18	A 17	A 16
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
4.5								1	J	4	<u> </u>	1		1	<u> </u>
15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
A 15	A 14	A 13	A 12	A 11	A 10	A 9	A 8	A 7	A 6	A 5	A 4	A 3	A 2	A 1	A 0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0

For 16-bit transfers, bit for A0 is not used and should be specified as a zero. Similarly, 32-bit longword transfers do not use A0 or A1 and both should be zeros.

VXI/VME BLOCK TRANSFER INSTRUCTIONS

VXI/VME Block Transfer instructions allow multiple data words to be transferred to/from a VXI/VME chassis with one instruction. This provides an efficient method for transferring a block of data to/from a module.

Associated with each Block Transfer instruction is a Transfer Count. The Transfer Count, which is 32-bits is length, is the two's complement of the maximum number of VXI/VME words to transfer during the block operation. This transfer count specifies the number of data words to transfer, regardless of the Data Word Size.

When the list processor finds a Block Transfer instruction in the List Memory, it loads the List Transfer Count Register with the Transfer Count data found in the list. The List Transfer Count Register is then incremented as each data word is transferred within the VXI/VME chassis. The Block Transfer operation continues until the List Transfer Count is exhausted or an error occurs. If the transfer terminates prematurely, the List Transfer Count Register may then be read to determine the number of data words remaining to transfer.

The format of the VXI/VME Block Transfer instruction is shown in the following diagram.

First Longword:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
0	DIR	0	0	0	0	0	0	0	0	AMD 5	AMD 4	AMD 3	AMD 2	AMD 1	AMD 0	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	J
0	1	0	0	0	0	0	0	0	0	1	AM 2	AM 1	WS 2	ws 1	AD	

Second Longword:

г	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
_	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Third Longword:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
TCR															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
TCR															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

An example of a Block Read operation is given below.

Direction

DIR

= 1 (A read operation is needed.)

VME/VXI Address

A31-0

= 20000040₁₆ (Start address of block to be read.)

Address Modifier

AMD5-0

= 0F₁₆ (A32 Supervisory Block Transfer)

Word Size

WS2-1

= 2 (16-bit transfer)

Access Mode

AM2-1

= 0 (Address is incremented.)

Abort Disable

AD

= 0 (Abort transfer on VXI timeout.)

Number of words to read

= 2048 words

Transfer Count

= Two's Complement of $2048 = FFFFF800_{16}$

The format for this example instruction is shown below.

 $Model\ V160$ -xyz3

First Longword of Instruction:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0	DIR	0	0	0	0	0	0	0	0	AMD 5	AMD 4	AMD 3	AMD 2	AMD 1	AMD 0
0	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1
		,							I—	I	LL	<u></u>	l	L	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	0	0	0	0	0	0	0	1	AM 2	AM 1	WS 2	WS 1	AD
0	1	0	0	0	0	0	0	0	0	1	0	0	1	0	0

Second Longword of Instruction:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
A 31	A 30	A 29	A 28	A 27	A 26	A 25	A 24	A 23	A 22	A 21	A 20	A 19	A 18	A 17	A 16
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	•		<u> </u>			<u> </u>		<u> </u>	L	<u></u>		<u> </u>	L	<u> </u>	<u></u>
15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
A 15	A 14	A 13	A 12	A 11	A 10	A 9	A 8	A 7	A 6	A 5	A 4	A 3	A 2	A 1	A 0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0

Third Longword:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
TCR 31	TCR 30	TCR 29	TCR 28	TCR 27	TCR 26	TCR 25	TCR 24	TCR 23	TCR 22	TCR 21	TCR 20	TCR 19	TCR 18	TCR 17	TCR 16
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Г	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
	TCR 15	TCR 14	TCR 13	TCR 12	TCR 11	TCR 10	TCR 9	TCR 8	TCR 7	TCR 6	TCR 5	TCR 4	TCR 3	TCR 2	TCR 1	TCR 0
	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0

VXI/VME SINGLE INLINE WRITE INSTRUCTION

The Single Inline Write instruction allows a predetermined data word to be placed in the list and written to the specified VXI/VME address. Most often, this type of instruction is used for module initialization. or as a mechanism to execute a VXI/VME write operation in a read list.

The format of the VXI/VME Single Inline Write instruction is shown in the following diagram.

First Longword:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
INT	DIR	0	0	0	0	0	0	0	0	AMD 5	AMD 4	AMD 3	AMD 2	AMD 1	AMD O
											•	·	L	L	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	0	0	0	0	0	0	1	0	AM	АМ	WS	WS	AD
											2	1	2	1	AU

Second Longword:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Model V160-xyz3 Third Longword:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
พ	₩	W	₩	₩	พ	W	₩	W	W	W	W	W	W	W	W
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	

For example, a single inline write operation is to be made to an address located within a VXI chassis and:

Direction VME/VXI Address DIR A31-0 = 0 (A write operation is needed.)

Address Modifier

AMD5-0

= 20000040₁₆ (Address to be written.) = 09₁₆ (A32 Nonpriviledged Data Access)

Word Size WS2-1

= 2 (16-bit transfer)

Access Mode Abort Disable AM2-1 AD

= 0 (Not used for single reads/writes.)

= 0 (Abort on VXI timeout.)

Write Data

 $= 55AA_{16}$

The format for this example instruction is shown below.

First Longword of Instruction:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0	DIR	0	0	0	0	0	0	0	0	AMD 5	AMD 4	AMD 3	AMD 2	AMD 1	AMD 0
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	
								I		<u> </u>		<u> </u>	<u></u>		

r	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	1	0	0	0	0	0	0	0	1	0	AM 2	AM 1	WS 2	WS 1	AD
	0	1	0	0	0	0	0	0	0	1	0	0	0	1	0	0

Model V160-xyz3

Second Longword of Instruction:

51	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
A 31	A 30	A 29	A 28	A 27	A 26	A 25	A 24	A 23	A 22	A 21	A 20	A 19	A 18	A 17	A 16
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
							2			I	I	И	L	<u> </u>	
15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
A 15	A 1/	A 17	A	A	Α	Α	Α	Α	Α	Α	А	А	Α	А	Δ

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
W 31	W 30	W 29	W 28	W 27	W 26	W 25	W 24	W 23	W 22	W 21	W 20	W 19	W 18	W 17	W 16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
								И	<u> </u>	L	L]
15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00

W W <th></th> <th> </th> <th></th> <th>T</th> <th>, ,</th> <th>10</th> <th></th> <th>. 00</th> <th>U7</th> <th>06</th> <th>05</th> <th>04</th> <th>03</th> <th>02</th> <th>01</th> <th>00</th>		 		T	, ,	10		. 00	U7	06	05	04	03	02	01	00
							1		W 7		₩ 5	W 4	W 3		₩ 1	W
	0	1	0	1	0	1	0	1	1	0	1	0	1	0	1	0

SPECIAL INSTRUCTIONS

There are several special instructions implemented by the V160-xyz3. These instructions are not handled by the hardware list processor. When the hardware list processing mechanism encounters any special instructions, it sends a signal to the DSP. The DSP then examines the special instruction and executes the operation.

The only required special instruction that must be used is the HALT instruction. The HALT must be the last list instruction loaded following a valid list.

The following chart shows the special instructions implemented by the V160-xyz3. The hex data shown corresponds to the lower 16-bit word of the special instruction (header).

Special Instruction (hex)	Function
8000	Halt
8023	Unconditional Branch
8042	Source Trigger
8043	Generate Interrupt

HALT INSTRUCTION

The Halt instruction has a value of 8000 hex and must be placed at the end of a list sequence. This special instruction informs the list processor to cease processing until retriggered. The following diagram shows the bit pattern for the Halt instruction.

г	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
											•	·I.	·			
_	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
			·						L		L	Li				0

BRANCH INSTRUCTIONS

The branch instructions allow the V160-xyz3 list processor to make decisions branch to other locations within the list memory. Whenever a branch instruction is used, the user must be extremely careful that the data returned from a particular list processing operation can be traced to its source.

The branch offsets are 16-bit signed numbers and negative numbers are expressed as two's complement format.

UNCONDITIONAL BRANCH INSTRUCTION

The Unconditional Branch instruction has an opcode of 8023 hex and is used to make unconditional branches. The following diagram shows the format for the Unconditional Branch instruction.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	***************************************						BRANCH	OFFSET							
15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
1	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1

SOURCE TRIGGER

The Source Trigger Instruction has an opcode of 8042 hex and is used to generate a trigger by using the Trigger Source Register. For more information, see the description of the Trigger Source Register in the section on Internal Registers.

The following shows the format for the Source Trigger instruction.

First Longword

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
													·	· · · · · · · · · · · · · · · · · · ·	<u></u> i
15	14	T		11					06			03	02	01	00
1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0

Second Longword

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
10 7 8 7 8 5 4 3 2 1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	E	,	7			
		Write data to Trigger Source Register														

GENERATE INTERRUPT INSTRUCTION

The Generate Interrupt Instruction has an opcode of 8043 hex and is used to generate an interrupt. In order for this instruction to generate an interrupt to the VXIbus, it must be first enabled in the Interrupt

CONTROL/STATUS REGISTER.

The following shows the format for the Generate Interrupt instruction.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
											1	·	J	L	L
15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
								1			1	L			<u>'</u>

LIST PROCESSING OPERATION

The V160-xyz3 provides a convenient method for executing a series of events through its list processing mechanism. This list of commands may contain various operations, including, VME transfers, branch instructions, or trigger instructions. Together, these operations can perform a complex sequence of events without the need for host intervention. Up to 127 slaves may be simultaneously executing unique lists as directed by a single host.

The list processing operation begins with the list being formed at the host and sent over the Interconnect Highway to the V160-xyz3. Several factors govern the content of the list.

- 1.) The only valid commands are those found in the section defining List Processing Instructions.
- 2.) The last instruction in valid list must be the HALT instruction.
- 3.) The list must be fewer that 32K (32768) elements long. (Including instructions, address information, in-line data, etc.)

After the list is loaded, a number of events can be used to start the list processing operation. A list of possible sources follows.

- 1.) Accessing the List Write/Read Data register.
- 2.) Writing the Execute List register.
- 3.) DSP initiates list execution. (Must be supported in firmware.)
- 4.) Front panel trigger signal Execute List
- 5.) Broadcast Trigger Message
- 6.) Addressed Slave Trigger Message
- 7.) TTL Trigger line or Interrupt Request Programmable selection in List Trigger Register
- 8.) Write the List Memory Address with bit 15 set to a one.
- 9.) Use onboard timer Timer Control and Data Registers

As an example, several memory locations are to be manipulated using a V160-xyz3. It is assumed, all necessary setup has been done. A pseudo command sequence follows.

- Single-Inline Write to Address A Data set to $AAAA_{16}$ 1.)
- 2.) Single-Inline Write to Address B - Data set to $BBBB_{16}$
- 3.) Single Read of Address B
- 4.) Single Read of Address A
- Block Read of Address C 1024 transfers 5.)
- 6.) Halt - Terminate List Execution

Table 13 shows a possible layout for this list of pseudo instructions.

Table 17. List Processing Example

		ocessing Example			
List Memory Address (Base 16)	<32-bits> List Memory Data (Base 16)	Instruction Description	Command Number		
0000	00094044	Single-Inline Write Command			
0001	80000000	Address to Write (A)			
0002	0000AAAA	Write Data	1		
0003	00094044	Single-Inline Write Command			
0004	C0000000	Address to Write (B)			
0005	0000BBBB	Write Data	2		
0006	40094044	Single Read Command			
0007	C000000	Read Address (B)	3		
0008	40094044	Single Read Command			
0009	80000000	Read Address (A)	4		
000A	400F4025	Block Read Command			
000B	D000000	Read Address (C)			
000C	FFFFFBE8	Transfer Count (2's Complement)	5		
000D	0008000	Halt Instruction	6		

TIMER INITIATED LIST EXECUTION

The V160-xyz3 provides an operating mode whereby a list of commands can be repetitively executed at a predetermined rate. This rate is referred to as the Tic Rate. This rate can range from 1000 nanoseconds to 1000 seconds.

The Timer Data and Timer Control Registers are used to control the Tic Rate. The List Go (LST GO) bit

in the Timer Control Register must be set to a one to enable this function. The rate is determined by the contents of the Timer Data Register. The Timer Data Register must be written with a 32-bit value that specifies the Tic Rate.

The format for a timer initiated list is similar to what has been described before, with one exception. If a single list of instructions is to be executed at the Tic Rate, the list HALT instruction must be followed by an Unconditional Branch instruction. This branch instruction should direct the list processor to jump to the beginning of the list. As a HALT instruction is encountered in the list, list execution ceases and the List Memory Address is incremented to point to the next list instruction. When the onboard timer expires, triggering list execution, the list processor sees the branch instruction as the first command in the list. The list processor will then begin executing commands until it reaches the HALT instruction again.

As an example, several memory locations are to be manipulated using a V160-xyz3. It is assumed, all necessary setup has been done. A pseudo command sequence follows.

- 1.) Single-Inline Write to Address A Data set to AAAA₁₆
- 2.) Single-Inline Write to Address B Data set to BBBB₁₆
- 3.) Halt Terminate List Execution
- 4.) Unconditional Branch to beginning of list.

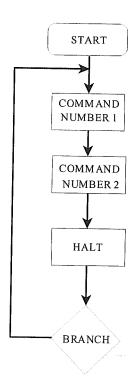

Table 14 shows a possible layout for this list of pseudo instructions.

Table 18. Timer Initiated List Processing Example

List Memory	<32-bits>						
Address (Base 16)	List Memory Data (Base 16)	Instruction Description	Command Number				
0100	00094044	Single-Inline Write Command					
0101	80000000	Address to Write (A)					
0102	0000AAAA	Write Data	1				
0103	94044	Single-Inline Write Command					
0104	C0000000	Address to Write (B)					
0105	0000BBBB	Write Data	2				
0106	00008000	Halt Instruction	3				
0107	FFF98023	Unconditional Branch to start	4				

Notice that the branch instruction offset specifies a relative address. The branch offset (FFF9 = -7) specifies that the next command executed should be back seven positions in the list. The list memory address is read and then adjusted by this amount. Relative addressing has been employed so multiple re-locatable lists are possible.

The following flow diagram illustrates this sequence.

MULTI-BUFFER MEMORY OPERATION

The model V160-xyz3-xB1x and V160-xyz3-xB2x contain one and four megabyte buffer memories, respectively. The purpose of the buffer memory is to store acquired data. Buffering allows a large amount of read data to be collected before the host must intervene and read the data.

Multi-buffering is a scheme where a number of buffers of equal size are defined. The V160-xyz3 allows 1-4 buffers ranging in size from 4 bytes to 1 or 4 Mbytes, depending on the option. The total size of the buffer can be calculated by the following expression.

Total Buffer Size = [(Individual Buffer Size) \times (Number of Desired Buffers)] - 1

The Total Buffer Size is the value that should be written to the Buffer End Address (BEA) register. Similarly, the Individual Buffer Size dictates the value to be placed in the Buffer Interval Count (BIC) register.

The Buffer End Address specification is used to create a circular buffer. Initially, the received read data is stored in at the beginning of the buffer (buffer address 0). As additional read data words are received, incremental locations of the buffer are filled. When the buffer address reaches the Buffer End Address, it is reset to zero, moving this pointer to the beginning of the buffer.

The Buffer Interval Count is used to help prevent the circular buffer from inadvertently overwriting

acquired data. As read operations occur, the Buffer Interval Count is decremented. When the counter reaches zero, signifying the boundary of an individual buffer, it sets a multibuffer flag. These flags are monitored using the Multi-buffer Memory Control register. Once a flag is set, the Buffer Interval Counter reloads itself to prepare to count the data words placed into the next buffer. This process will continue until the Buffer End Address is reached. The circular buffer then rolls over to point to the beginning of the buffer. It is critical to have the Buffer End Address roll over at the same time the last multibuffer flag is set. If this is not the case, the Buffer Interval Counter will not correctly represent the number of words and set flags at inappropriate times. This can be prevented by using the relationship above to determine the proper Buffer End Address.

The MBM flags can be used by the host in two ways. First, the MBM flag bits may simply be polled by reading the MBM Control register. The second option is to enable the MBM flags to generate a Demand Message. Demand Messages may be inserted into the data stream by any slave on the Interconnect Highway. These messages are sent back to the host, providing an asynchronous means of signaling the host that a buffer has filled. For more information on this process refer to the section on Demand Messages and the manual provided with the appropriate highway driver. In either case, the individual flags can be cleared be writing to the bits with data set to ones or by using the auto-clear feature and reading the individual buffer.

The following diagram illustrates a typical example in which a 4 megabyte (1 megaword) buffer is used. The buffer is set up such that a multibuffer flag is set each time one-half of the buffer is filled.

← 32 - bit data →	-	
		Beginning of Buffer (Buffer Address = 0)
First 2 Megabytes	MBM Flag 1 Set	•
	:	•
Second 2 Megabytes	MBM Flag 2 Set	(Buffer End Address) End of Buffer

For the above example, the Buffer End Address is set to FFFFF hex. This specification indicates that after the FFFFF hex location is accessed, the buffer rolls over to point to the starting location. Therefore, after the V160-xyz3 has received 1048576 32-bit read data words, the buffer address is reset to zero and the buffer filling continues. Since two buffers are being used, the Buffer Interval Count should be set for one-half of the buffer size. Using the relationship described before:

Total Buffer Size = [(Individual Buffer Size) \times (Number of Desired Buffers)] - 1

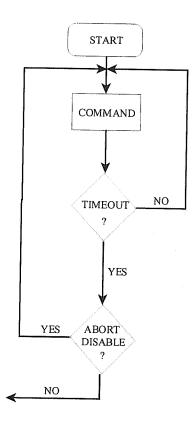
Total Buffer Size = 1048576 data words = Buffer End Address (FFFFF hex)

Number of Buffers = 2

Individual Buffer Size = 524288 = Buffer Interval Count (80000 hex)

In this case, the buffer begins to fill, decrementing the interval counter, until 524288 32-bit words are in the buffer. At this point, the first two megabyte buffer is full, the first MBM flag is set, and the interval counter reloads itself. Setting this flag can prompt the host to read the first buffer by the polling or demand techniques described before. The next read transfer places the data in the first location of the second two megabytes. Again, successive locations are filled until the interval counter sets the second MBM flag and reloads itself. The buffer address will equal the end address (FFFFF hex) and the buffer address is cleared. Further read transfers begin overwriting the data in the first two megabyte buffer. The other two MBM flags are not used in this example because only two buffers are defined. If three buffers were defined, the first three flags would be used.

DEMAND MESSAGES


The purpose of Demand Messages is to have a mechanism to inform the host of certain conditions. In the case of the multibuffer memory example, a demand may be generated as each flag is set. After the first flag generates a demand, the host must read the contents of the first buffer or risk losing data when the buffer rolls over.

The V160-xyz3 can generate demand messages originating from three different sources. These sources include the DSP, multibuffer memory (flags) and a VME interrupt. Refer to the description of the Demand FIFO Register (DFR) and the Control Status Register (CSR) for further information.

Demands may be handled in two ways. One method of managing demands is by simply polling the Demand Pending (DMD PND) bit in the Control Status Register and reading the Demand FIFO. The second is to enable a pending demand to generate a highway message. When handled this way, it is not necessary to constantly read the Control Status register to determine if further action should be taken. The V160-xyz3 can also insert these demand messages in the data stream. This allows demands to be seen at the host during large block transfers.

ABORT DISABLE FUNCTION

The Abort Disable function is used by the V160-xyz3 during list processing and highway transfers. Both cases are similar and its operation is shown by the following figure.

This diagram shows the sequence of the transfer. As each transfer ends, the V160-xyz3 determines whether or not the transfer was prematurely aborted by the onboard timer. If not, the V160-xyz3 continues on to process the next command. If the transfer did timeout, it then checks the Abort Disable bit. If this bit is set, the V160-xyz3 continues on as if a timeout had not occurred. In general this bit should be specified as inactive, allowing the V160-xyz3 to generate the appropriate error messages. For more information on the Abort Disable bit see the sections on Command and List Processing Instruction Formats.

DSP FIRMWARE

The onboard DSP uses firmware for list processing and serial port operations. This firmware may be periodically updated to include additional functionality as the need arises. This section describes the serial port functions and the process of updating this firmware.

SERIAL PORT FUNCTIONS

The V160-xyz3 has a serial port on the front panel that provides a communication path with the onboard DSP. The interface to the DSP is one-half of a Signetics SCN2681 dual asynchronous receiver/transmitter (DUART). The other channel of the DUART is not used and its use is reserved for future definition.

The DUART uses a MAXIM MAX232CPE RS-232 driver/receiver. The serial port pin description is shown in the chart below.

Pin Number(s)	Description
2	Receive Data (RD)
3	Transmit Data (TD)
5	Ground (GND)
1, 4, 6-9	No Connection

The baud rate for this channel is selected using SW2 positions five through eight.

APPENDIX

ID/Logical Addre	ess Register	(Offset 0016)
- B	DO THORIGOT	COTTOCE ON 181

	On	Read	transactions
--	----	------	--------------

15	14		12			09		07	06	05	04	03	02	01	00
0	1	1	1	1	1	1	1	0	0	1	0	1	0	0	1

On Write transactions:

15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
			Not	Used				LA	LA 64	LA 32	LA 16	LA 08	LA	LA	IA
								128	64	32	16	08	LA 04	02	01

Device Type Register (Offset 02₁₆)

For Slot 0 configurations:

15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	
0	0	0	0	0											0	Ī

For non-Slot 0 configurations:

	14					09	08	-,		05		03	02	01	oo	
0	0	0	0	0	0	0	1	0	1	1	0	0	0	0	0	

Status/Control Register (Offset 0416)

On Read transactions:

ı	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	0	MODID *	1	1	1	1	1	1	1	1	1	1	Ready	Pass	SYS INB	Soft Reset	

On Write transactions:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
						Not	Used							SYS	Soft	
														INB	Reset	Į

Attribute	Register	(Offset	0816))
-----------	----------	---------	-------	---

15	14				10		8	7	6	5	4	3	2	1	n	
1	1	1	1	1	1	1	1	1	1	1	1	1	IR*	IH*	IS*	

MODID Register (Offset 0816)

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	n	
	1	1	MODID Enable	MID 12	MID 11	MID 10	MID 9	MID 8	MID 7	MID 6	MID 5	MID 4	MID 3	MID 2	MID 1	MID	

Serial Number High Register (Offset $0A_{16}$)

F	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	n	
	SN 31	SN 30	SN 29		SN 27	SN 26	SN 25	SN 24	SN 23	SN 22	SN 21	SN 20	SN 19	SN 18	SN 17	SN 16	

Serial Number Low Register (Offset $0C_{16}$)

г	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	n	
	SN 15	SN 14	SN 13	SN 12	SN 11	SN 10	SN 09	SN 08	SN 07	SN 06	SN 05	SN 04	SN 03	SN 02	SN 01	SN 00	

Version Number Register (Offset $0E_{16}$)

 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
F	irmware	Version	n	F.	irmware	Revisio	on	Н	ardware	Versio	n	Н	ardware	Revisio	on

Interrupt Status Register (Offset 1A₁₆)

15	14	13 T	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	LA 128	LA 64	LA 32	LA 16	LA 8	LA 4	LA 2	LA 1
		Inte	rrupt C	ause/St	atus					Devi	ce Logi	cal Add	ress		

Interrupt Control Register (Offset $1C_{16}$)

ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	1	1	1	1	1	1	1	1	IR EN*	1	IRQ S3	IRQ S2	IRQ S1	1	1	1	!

Subclass Register (Offset $1E_{16}$)

_	15	14		12			•					4			1	n	
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	

Suffix High Register (Offset 20₁₆)

,	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	n	
	0	1	0	1	1	0	1	0	0	1	0	0	0	0	0	1	

Suffix Low Register (Offset 22₁₆)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	n	
0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	1]

Control/Status Register (CSR) (00₁₆)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	n	
STS PAS	TMR ENA	LST BSY	DMD OFL	DMD CLR	DMD PND	DMD ENA	MBM D	INT DEN	MBM ENA	DLY ENA	BST ENA	INH	SYS FAL	RD SFL	SYS	

Burst Count Register (BCT) (0416)

Г	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
				Not	Used				ВСТ 7	вст 6	ВСТ 5	ВСТ 4	ВСТ 3	ВСТ 2	BCT 1	BCT 0	

Delay Count Register (DCT) (08₁₆)

г	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	DCT 15	DCT 14	DCT 13	DCT 12	DCT 11	DCT 10	DCT 9	DCT 8	DCT 7	DCT 6	DCT 5	DCT 4	DCT 3	DCT 2	DCT 1	DCT 0	

Total Transfer Count Register (TTCR) (0 C_{16})

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
TCR	TCR	TCR	TCR	TCR	TCR										
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	٦	2	L	
TCR	TCR5	TCR	TCR	TCR	TCR	TCR									
15	14	13	12	11	10	9	8	7	6		4	3	2	1	0

List Transfer Count Register (LTCR) (10₁₆)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
LCR 31	LCR 30	LCR 29	LCR 28	LCR 27	LCR 26	LCR 25	LCR 24	LCR 23	LCR 22	LCR 21	LCR 20	LCR 19	LCR 18	LCR 17	LCR 16
15	14	13	12	11	10	9	8	7	6	5	<u></u>	7	2	I	
LCD								· · · · · · · · · · · · · · · · · · ·		r – –	-			1	U
LCR 15	LCR 14	LCR 13	LCR 12	LCR 11	LCR 10	LCR 9	LCR 8	LCR 7	LCR 6	LCR 5	LCR 4	LCR3	LCR 2	LCR 1	LCR O

Demand FIFO Register (DFR) (14₁₆)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
					Not	Used						DSC 3	DSC 2	DSC 1	DSC 0	

Trigger Source Register (TSRC) (20_{16})

1:	5 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	Not Used	RST TSP	LST GO	FP TGB	FP TGA	ECL 1	ECL 0	TTL 7	TTL 6	TTL 5	TTL 4	TTL 3	TTL 2	TTL 1	TTL 0	

Broadcast Trigger Mask Register (BTMSK) (24₁₆)

15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Not Used	RST TSP		FP TGB	FP TGA	ECL 1	ECL 0	TTL 7	TTL 6	TTL 5	TTL 4	TTL 3	TTL 2	TTL 1	TTL O	

List Memory Address Register (LMA) (30₁₆)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
XEQ	LMA															
LST	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

List Memory Data Register (LMD) (34₁₆)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
LMD 31	LMD 30	LMD 29	LMD 28	LMD 27	LMD 26	LMD 25	LMD 24	LMD 23	LMD 22	LMD 21	LMD 20	LMD 19	LMD 18	LMD 17	LMD 16
											L				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LMD 15	LMD 14	LMD 13	LMD 12	LMD 11	LMD 10	LMD 9	LMD 8	LMD 7	LMD 6	LMD 5	LMD 4	LMD 3	LMD 2	LMD	LMD
				IL	<u> </u>	L		L	L		_ +	ر ا	۲ ا	1	0

List Go (LGO) (38₁₆)

The List Go is an internal address at location 38₁₆. A write operation with any data pattern initiates list execution. This function is useful when it is necessary to execute a list operation that does not require any data transfers.

List Trigger Register (LTRG) (3C₁₆)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
				Not	Used					LTG ENA	SEL 4	SEL 3	SEL 2	SEL 1	SEL 0	

List Write/Read Data Register (LWRD) (4016)

The List Write/Read Data Register is located at internal address 40₁₆. This address is used to transfer data to/from the V160-xyz3 during list processing operations. When a write or read to this register is executed, the list processing sequence is initiated. If a write list was specified, the command to this register must be a write operation. Conversely, if a read list was specified, the command to this register must be a read.

Timer	Control	Register	(TCR)	(50_{16})
-------	---------	----------	-------	-------------

г	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	No Use		RST TSP	LST GO	FP TGB	FP TGA	ECL 1	ECL 0	TTL 7	TTL 6	TTL 5	TTL 4	TTL 3	TTL 2	TTL 1	TTL 0	

Timer Data Register (TDR) (54₁₆)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
TDR															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TDR															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Multi-Buffer Memory Address Register (MBMA) (80_{16})

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Not	Used						MBM A19	MBM A18	MBM A17	MBM A16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MBM A15	MBM A14	MBM A13	MMB A12	MBM A11	MBM A10	MBM A9	MBM A8	MBM A7	MBM A6	MBM A5	MBM A4	MBM	MBM	MBM	МВМ

Multi-Buffer Memory Control Register (MBMC) (88₁₆)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Not	Used					CLR ENA	OVR RUN	FLG 4	FLG 3	FLG 2	FLG 1

Buffer Interval Counter (BIC) (8 C_{16})

BEA 15

BEA

BEA 13 BEA 12 BEA 11 BEA 10 BEA 9 BEA 8 BEA 7

BEA

BEA 5 BEA 4 BEA 3 BEA 2 BEA 1 BEA 0

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Not Used											BIC 19	BIC 18	BIC 17	BIC 16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BIC 15	BIC 14	BIC 13	BIC 12	BIC 11	BIC 10	BIC 9	BIC 8	BIC 7	BIC 6	BIC 5	BIC 4	BIC 3	BIC 2	BIC 1	BIC 0
Buffer End Address (BEA) (90 ₁₆)															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Not Used										BEA 19	BEA 18	BEA 17	BEA 16	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

WARRANTY

KineticSystems Company, LLC warrants its standard hardware products to be free of defects in workmanship and materials for a period of one year from the date of shipment to the original end user. Software products manufactured by KineticSystems are warranted to conform to the Software Product Description (SPD) applicable at the time of purchase for a period of ninety days from the date of shipment to the original end user. Products purchased for resale by KineticSystems carry the original equipment manufacturer's warranty.

KineticSystems will, at its option, either repair or replace products that prove to be defective in materials or workmanship during the warranty period.

Transportation charges for shipping products to KineticSystems shall be prepaid by the purchaser, while charges for returning the repaired warranty product to the purchaser, if located in the United States, shall be paid by KineticSystems. Return shipment will be made by UPS, where available, unless the purchaser requests a premium method of shipment at their expense. The selected carrier shall not be construed to be the agent of KineticSystems, nor will KineticSystems assume any liability in connection with the services provided by the carrier.

The product warranty may vary outside the United States and does not include shipping, customs clearance, or any other charges. Consult your local authorized representative or reseller for more information regarding specific warranty coverage and shipping details.

PRODUCT SPECIFICATIONS AND DESCRIPTIONS IN THIS DOCUMENT SUBJECT TO CHANGE WITHOUT NOTICE.

KINETICSYSTEMS SPECIFICALLY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR ANY OTHER WARRANTY EITHER EXPRESSED OR IMPLIED, EXCEPT AS IS EXPRESSLY SET FORTH HEREIN. PRODUCT FAILURES CREATED BY UNAUTHORIZED MODIFICATIONS, PRODUCT MISUSE, OR IMPROPER INSTALLATION ARE NOT COVERED BY THIS WARRANTY.

THE WARRANTIES PROVIIDED HEREIN ARE THE PURCHASER'S SOLE AND EXCLUSIVE REMEDIES ON ANY CLAIM OF ANY KIND FOR ANY LOSS OR DAMAGE ARISING OUT OF, CONNECTED WITH, OR RESULTING FROM THE USE, PERFORMANCE OR BREACH THEREOF, OR FROM THE DESIGN, MANUFACTURE, SALE, DELIVERY, RESALE, OR REPAIR OR USE OF ANY PRODUCTS COVERED OR FURNISHED BY KINETICSYSTEMS INCLUDING BUT NOT LIMITED TO ANY CLAIM OF NEGLIGENCE OR OTHER TORTIOUS BREACH, SHALL BE THE REPAIR OR REPLACEMENT, FOB FACTORY, AS KINETICSYSTEMS MAY ELECT, OF THE PRODUCT OR PART THEREOF GIVING RISE TO SUCH CLAIM, EXCEPT THAT KINETICSYSTEMS' LIABILITY FOR SUCH REPAIR OR REPLACEMENT SHALL IN NO EVENT EXCEED THE CONTRACT PRICE ALLOCABLE TO THE PRODUCTS OR PART THEROF WHICH GIVES RISE TO THE CLAIM. IN NO EVENT SHALL KINETICSYSTEMS BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOSS OF PROFITS.

Products will not be accepted for credit or exchange without the prior written approval of KineticSystems. If it is necessary to return a product for repair, replacement or exchange, a Return Authorization (RA) Number must first be obtained from the Repair Service Center prior to shipping the product to KineticSystems. The following steps should be taken before returning any product:

- 1. Contact KineticSystems and discuss the problem with a Technical Service Engineer.
- 2. Obtain a Return Authorization (RA) Number.
- 3. Initiate a purchase order for the estimated repair charge if the product is out of warranty.
- 4. Include a description of the problem and your technical contact person with the product.
- 5. Ship the product prepaid with the RA Number marked on the outside of the package to:

KineticSystems Company, LLC Repair Service Center 900 North State Street Lockport, IL 60441

Telephone: (815) 838-0005 Facsimile: (815) 838-4424 Email: tech-serv@kscorp.com