Model V157-AA21

KineticSystems Power PC Slot0 Controller

User's Manual

October 2008

(C) 2008 Copyright by DynamicSignals LLC Lockport, Illinois All rights reserved

Table of Contents

INSTALLATION AND SETUP	
Logical Address	
CLK10 Signal Generation.	
Installation	
V157 Front Panel Description	
PMC (PCI Mezzanine Cards)	!
Device Type Register	
Status/Control Register	
Protocol Register	
Write Signal Register	10
Response Register	11
Data Low Register	
Suffix High Register	
Suffix Low Register	18
Serial Number High Register	18
Serial Number Low Register	19
Module ID Register	14
Interrupt Status Register	14
Interrupt Control Register.	16
Trigger Interrupt Mask/Trigger Interrupt Source Register	17
Trigger Interrupt Source Clear Register	18
Trigger Source Register	19
Trigger Timer Configuration Register	20
Location Monitor Interrupt Control Register	23
Interrupt Status ID Register	24
Miscellaneous Control Register	25
Read Signal Register	26
VXI Transfers	26
VXI Triggers	27
Synchronous Trigger Example:	28
APPENDIX A	33
V157 Adapter Card Diagram	33
APPENDIX B	35
Single Board Computer (SBC) Switch and Connector Locations	25
SW400, SW401 and SW403 Switch Settings	36
SBC Strap Selections	
APPENDIX C	
VXI P2 Connector Assignments	38
VXI P2 Connector Assignments Serial Port(s) Connector Pinout	39
RS-422 PMC Module Connector Pinout.	40
RS-422 PMC Card Switch Settings	41
Close-Up View of Switch Settings on Serial PMC Card	43 46

INSTALLATION AND SETUP

The Model V157 is shipped in an anti-static bag with a styrofoam packing container. Carefully remove the module from its anti-static bag and prepare to set the various options to conform to the operating environment. Make sure that all anti-static precautions are taken to avoid damaging the module.

The V157 consists of a VME Single Board Computer (SBC) and a VXIbus adapter unit. Both of these cards require various strap and switch selections to be set before installing the module in the VXI chassis. The following chart shows the strap/switch selections along with their default configurations. If any of the user requirements vary from the default configuration, consult the following sections for changing the parameter. The V157 will be referred to as two components, the V157 adapter and the V157 SBC. Any reference to switch and strap locations on the V157 adapter or V157 SBC can be found in this manual. Additional information concerning operation of the SBC can be obtain from the Creative Electronic Systems (CES) website at www.ces.ch/index.html. The SBC incorporated into the V157 is the RIO4 8072 Entry Level High-Performance Reconfigurable Single Board Computer.

Please refer to Appendix A of this manual for the location of the straps and switches on the V157 adapter and Appendix B for the locations of straps and switches on the V157 SBC.

Selectable Parameter	<u>Default Value</u>
V157 Adapter Default	
Logical Address	0
System Controller	Enabled
VXI CLK10 Source	Internal
V157 SBC Default	
P0 JTAG Enable	Disable
Alternate Boot	Disable
P0 Mode	Disable
NAND Flash Write Protect	Unprotected
NOR Flash Write Protect	${f Unprotected}$
VME Reset Mode	Enable
VME64X	Disable
Slot1	Enable
Shield Ground	Disconnect
JTAG Mode	Disabled
Disable Watchdog	Disabled
3.3 Voltage Source	Local
PMC RS-422 Default	
Signaling Protocol	RS-422
Half-Duplex	Disabled
Location ID	Zero
3.3 Voltage Source	Local

Logical Address

The V157 must be located in the Slot0 position as it is a device that can only function as a Slot0 controller. A device that operates as a Slot0 controller must have its Logical Address set to 0.

The V157 contains a set of 8 DIP switches used to set the Logical Address. This set of switches allows a selection of a logical address in the range of 0 to 255. Since the V157 is to be operated as a Slot0 controller, the only Logical Address available is 0 (zero).

A switch that is in the OPEN position yields a bit set to a one. A switch that is in the CLOSED position yields a bit set to a zero. The left-most switch corresponds to Logical Address bit 128 and the right-most switch corresponds to Logical Address bit 1. Please refer to Appendix A for the location and setting of the Logical Address switches. The following diagram shows the bit pattern for the A16 Logical Base Address.

15	14	13	12	11	10.	~ 9 ´	8	7	6	5	4	3	2	_ 1	0
1	1	LA	LA	LA	LA	LA	LA	LA	LA	0	0	0	0	0	0
		128	64	32	16	, 8	4	2	1						

Bits 15 and 14 are set to one (VXI defined).

Bits 13 through 6 are user selectable using the Logical Address switches LA128 - LA1. Bits 5 though 0 are set to 0 to indicate the beginning of a 64 byte block.

For statically configured devices, the setting of the Logical Address switches locks the devices' Configuration Registers in A16 address space. Each device has an allocated configuration address space of 64 bytes. The Logical Base Address of a device in A16 address space may then be calculated using the following equation:

A16 Base Address = 0xC000 + (Logical Address * 64)

For example, the A16 Base Address of a device set for Logical Address 2 is 0xC080. For a device set to Logical Address 2, the following bit pattern is established for the base address.

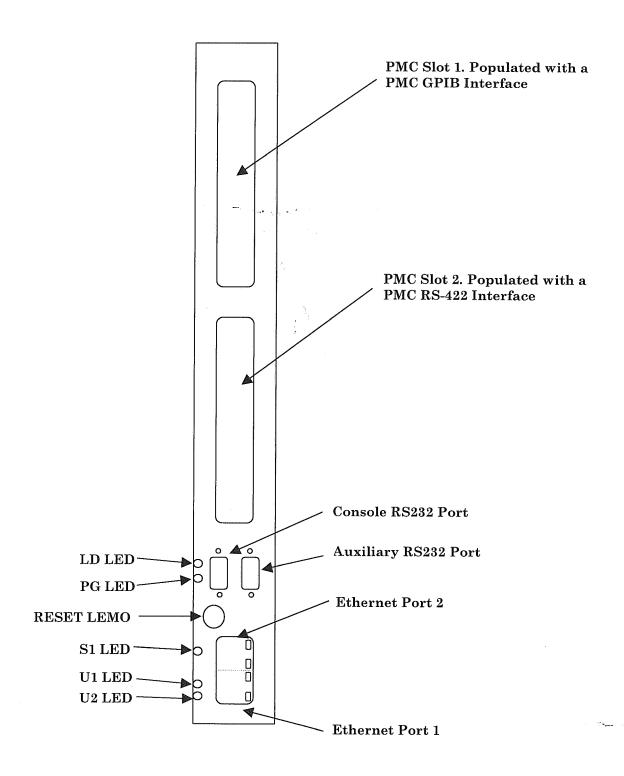
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	l

CLK10 Signal Generation

The VXIbus CLK10 signal is a 10 Megahertz differential ECL clock driven onto the bus by the Slot0 controller. Since the V157 is used as a Slot0 controller, it must be configured to drive this VXIbus signal. The signal source is generated internally by the V157 and routed out onto the VXIbus.

A set of six straps, located near the P1/P2 connector for VXI, is used to configure the source of the CLK10 signal. This set of straps actually controls the 2 CLK10 signals, +CLK10 and -CLK10. When the straps are installed in the INT (INTERNAL) position, the CLK10 signals are driven by a clock source on the V157. Any other strap selection for this function should be avoided as this would prevent the 10 Mhz clock from reaching the VXIbus.

Installation


After all the user selectable configuration parameters have been setup, the module may then be inserted into the VXI chassis. In order to use the V157 as a Slot0 controller it *must* be located in the Slot0 position within the chassis. The Slot0 location is slot 0 in the chassis and is the left-most slot.

CAUTION:	TURN OFF MAINFRAME POWER BEFORE INSERTING OR REMOVING A VXIbus MODULE.
WARNING:	REMEMBER TO REMOVE THE INTERRUPT ACKNOWLEDGE AND BUS GRANT DAISY CHAIN JUMPERS BEFORE INSERTING A VXI MODULE

The VXIbus backplane must be properly configured before inserting a VXI module and applying power. The Interrupt Acknowledge jumper must be removed from the slot in which the VXI module is to be inserted. The Bus Grant jumpers must also be removed from the slot in which the VXI module is to be inserted. All unoccupied slot locations must have the Interrupt Acknowledge and Bus Grant jumpers installed so that the interrupt and grant continuity is not disrupted by any open slots. When using backplanes that auto-configure, these steps are not necessary since the installation of a VXI module in the chassis makes the required configuration occur.

V157 Front Panel Description

The front panel of the V157 contains all the connections to external peripherals. The table following the diagram details the function of the various indicators.

Front Panel Indicators

The following table describes the function of the front panel indicators. The left-most indicators (LED's) can be seen through small holes in the front panel. The LED's associated with each Ethernet connection are just to the right side of the Ethernet connector.

LED Indicator	Function	Color	Description when LED is illuminated
LD	FPGA not loaded	Red	The FPGA's are not correctly loaded
PG	Power Good	Green	The power rails for proper operation are within limits.
DCM	DCM Not Locked	Red	FPGA's are not DCM locked
S1	VME Slot1	Green	The V157 is acting as a Slot0 (VME Slot1) Controller
Ethernet Port 1	Ethernet Link	Green	Port 1 Link-up
Ethernet Port1	Ethernet Activity	Yellow	Port 1 Activity
Ethernet Port 2	Ethernet Link	Green	Port 2 Link-up
Ethernet Port2	Ethernet Activity	Yellow	Port 2 Activity
U1	User Green LED	Green	Programmed by the user
U2	User Orange LED	Orange	Programmed by the user

PMC (PCI Mezzanine Cards)

The V157 contains two PMC expansion sites that are populated with PMC cards that extend the functionality of the V157. The top-most PMC site has a GPIB (General Purpose Interface Bus) card installed. This card is a product manufactured by National Instruments. Additional information regarding this interface can be found on the NI website at www.ni.com.

The lower PMC site contains an 8-channel RS422 serial interface PMC card. The 8 channels of serial communication are connected to the PMC card through a 68 position VHDC-style connector. Each of the 8 serial channels utilize RS422 balanced signaling. The signals consist of Transmit (Tx), Receive (Rx), Clear-To-Send (CTS) and Request-To-Send (RTS).

The serial PMC card is a product from Ramix, now distributed by GE Fanuc. The website address to get additional information on this card can be found at www.gefanucembedded.com. The model number of the unit is PMC422/FP.

VXIbus Configuration Registers and Operational Registers

The following table shows the various registers located in A16 space for the V157 Slot 0 Controller.

_A16 Offset	Write Access	Read Access
0016	Logical Address Register	Identification
02_{16}	Reserved	Device Type Register
04_{16}	Status/Control Register	Status/Control Register
06_{16}	Reserved	Reserved
08_{16}	Write Signal Register	Protocol Register
$0A_{16}$	Reserved	Response Register
$0\mathrm{C}_{16}$	Reserved	Reserved
$0\mathrm{E}_{16}$	Data Low Register	Data Low Register
10_{16}	Reserved	Reserved
12_{16}	Reserved	Reserved
14_{16}	Reserved	Reserved
16_{16}	Reserved	Reserved
18_{16}	Reserved	Reserved
$1A_{16}$	Reserved	Reserved
$1C_{16}$	Reserved	Reserved
$1\mathrm{E}_{16}$	Reserved	Reserved
20_{16}	Reserved	Suffix High Register
22_{16}	Reserved	Suffix Low Register
24_{16}	Reserved	Serial Number High Register
26_{16}	Reserved	Serial Number Low Register
28_{16}	Module ID Register	Module ID Register
$2A_{16}$	Reserved	Interrupt Status Register
$2\mathrm{C}_{16}$	Interrupt Control Register	Interrupt Control Register
$2\mathrm{E}_{16}$	Trigger Interrupt Mask	Trigger Interrupt Source
30_{16}	Trigger Interrupt Source Clear	Reserved
32_{16}	Trigger Source Register	Reserved
34_{16}	Trigger Timer Configuration Register	Reserved
36_{16}	Reserved	Reserved
38_{16}	Reserved	Reserved
$3A_{16}$	Location Monitor Interrupt Control Register	Interrupt Status ID Register
$3C_{16}$	Miscellaneous Control Register	Read Signal Register
$3\mathrm{E}_{16}$	Reserved	Version Number Register

7:0

128-LA1

ID/Logical Address Register

The ID/Logical Address Register is a write/read register located at an offset of 00₁₆ from the A16 Logical Base Address. A read operation to this register returns the Device Class, the addressing modes of the devices' operational registers and the Manufacturers' Identification. A write operation to this register address is typically executed by the Resource Manager during a Dynamic Configuration allocation sequence. During the sequence, the Resource Manager allocates a Logical Address to the V157 by writing a logical address value to the least significant eight bits of this register. The format and bit assignments of this register are shown in the following diagram. Since this register has write-only and read-only bits, two bit patterns are shown.

On read tra	nsac	tions	:												00	h
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read-only	1	0	1	1	1	1	1	1	0	0	1	0	1	0	0	1
	Clas Mess Bas	sage	Addre Mode		 ,	^N mag• *m.)	, Ki	neticSy	stems'	Manufa	cturer l	D = F2	9 ₁₆ (388	31)		
Bit(s) Mne 15:14 Devi				The	aning ese bit ibinat	s are										This bitevice.
13:12 Addr	ess S	bpace		ope V15	ration	ıal re bear	egiste	rs. S	ince	all th	e con	ımur	nicat	ion re	egiste	e V157's rs of the are both
11:0 Manu	factu	rer			s field 1(F29						er of	a VX	II de	vice.	This	value is
On write tr	ansa	ctions	s:												00	h
	15 1	4 1	3 12	11	10	9	8	7	6	5	4		3	2	1	0
Write-only			No	t Used							Logic	al Add	Iress			
` '	n em ot Use		T^{1}	iese (8 bits		anin not us	_	A wri	te op	eratio	on to	thes	e bits	s has	no effect

Logical Address 128 through 1 are write-only bits used to set the V157's Logical Address during a Dynamic Configuration cycle executed by the Resource Manager. A Dynamic Configuration sequence is performed on a VXI module when its logical address has been set to $255 \ (FF_{16})$.

on the V157.

Device Type Register

The Device Type Register is a read-only register located at an offset of 02_{16} from the A16 Logical Base Address of the V157. This register contains the Model Code of the V157. Since the V157 is an A16-only device, the entire 16-bits of this field is used for the Model Code.

Model Codes for VXI Slot0 devices must be in the range of 00_{16} to FF₁₆. Model Codes for non-Slot0 devices must be in the range of 100_{16} to FFFF₁₆. The V157, as a Slot0 Controller, returns a Model Code of 57_{16} .

The following diagram shows the bit pattern for the Device Type Register for the V157.

Slot0 Configuration:

	15	14	13	12	11	10	· 9 ′	8	7	6	5	4	3	2	1	0	
Read-only	0	0	0	0	0	0	0	0	0	1	0	1	0	1	1	1	

Status/Control Register

The Status/Control Register is a write/read register located at an offset of 04₁₆ from the A16 Logical Base Address of the V157. This register contains write-only, read-only and write/read bits. This register is used to monitor the Module ID VXI signal, control the assertion of SYSFAIL, control Soft Reset, and check the status of the Power-On Self Test. The following two diagrams show the Status/Control Register, one for read accesses and one for write.

04h

For read operations executed to the Status/Control Register:

Read-Write	0	MOD ID*	1	1	1	1	1	1	1	1	1	1	RDY	PASS	SYS	SFT RST	
Bit(s)	Mn	emor	nic			M	leani	ng									•
15	Not	Used	-	This l	oit is	not u	sed a	nd re	ad as	a ze	ro.						
14	МО	DID*		This line of select	n th	e VX	I P2	conn	ector.								
13:4	Not	Used	•	These	bits	are n	ot us	ed an	ıd rea	d as	ones.						
3	RE	ADY		Ready	z is :	a rea	d-onl	v bit	that	ie e	et to	9 01	na in	dicati	na c	110000	oful

Bit(s)	Mnemonic	Meaning
		completion of register initialization.
2	PASS	Pass is a read-only bit that is set to a one when the V157 has completed its power-on self-test without any errors. If an error occurs, this bit is set to a zero and the SYSFAIL signal is asserted by the V157.
1	SYS INH	SYSFAIL INHIBIT. Reading this bit as a one indicates that the V157 is prevented from driving the backplane SYSFAIL line.
0	SFT RST	SFT RST This bit is read as a one when the V157 has been placed into the Soft Reset state. Writing this register with this bit set to a zero removes the V157 from the soft reset state.

Write-only	Not Used							
		INH	RST					
Bit(s)	Mnemonic	Meaning						
15:2	Not Used	These bits are not used for write operations.						
1	SYS INH	SYSFAIL INHIBIT is a write/read bit used to inhibit to asserting the backplane signal SYSFAIL. Setting this disables the assertion of SYSFAIL and a zero enables the	bit	to a				
0	SFT RST	SOFT RESET is a write/read bit used to reset the V157 bit to a one places the V157 in the soft reset state and w to a zero removes the V157 from the reset state.						

04h

For write operations executed to the Status/Control Register:

Protocol Register

The Protocol Register is a read-only register located at an offset of 08_{16} from the A16 Logical Base Address of the V157. The Protocol Register is accessed by executing a read to this address location and the Signal Register is accessed by writing to this location. The Protocol Register is used to define the communication capabilities of the Message Based Device. The following diagram shows the bit layout of the Protocol Register for the V157.

															08	h	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Read-only	CMDR*	SGNL REG*	MSTR*	INTR	FHS*	SHR MEM*	1	1	1	1	1	1	1	1	1	1	
		REG				MEM.		l		<u> </u>			<u> </u>	<u> </u>	Ĺ		
Bit(s)		emon	ic				Iean										
15	CMI	DR*		only locat Serv	capa ion ii ant N	ble of ndicat Iessa	Mes tes tl ge B	sage nat th ased	Base ie dev funct	d Ser vice is ions.	vant s capa The	funct able c	tions. of bot 7 sets	A ze h Cou s this	ero in mmar bit t	vice that a this bit ader and to a zero	
14	SGN	IL-RF	EG*	SIGNAL REGISTER is a read-only bit that is set to a one for a device that does not contain a Signal Register. Devices that contain a Signal Register set this bit to a zero. Since the V157 contains a functional Signal Register, this bit is set to a zero. MASTER is a read-only bit that is set to a one for devices that do not have VMEbus mastering capability. A zero for this bit location													
13	MST	TR*		Signal Register, this bit is set to a zero. MASTER is a read-only bit that is set to a one for devices that do no have VMEbus mastering capability. A zero for this bit location indicates the device has the ability to become a VMEbus master. The V157 has VMEbus mastering capability and sets this bit to a zero.													
12	INT	R		indicates the device has the ability to become a VMEbus master. The V157 has VMEbus mastering capability and sets this bit to a zero. INTERRUPTER is a read-only bit that indicates whether the device can generate interrupts. A zero in this bit location indicates no interrupting ability and a one indicates that the device can generate interrupts. The V157 can generate interrupts and sets this bit to a one.													
11	FHS	*FAS		interrupts. The V157 can generate interrupts and sets this bit to													
10	SHR	MEN		imple share	ement ed me	s sha mory	red r	nemo uppor	ry. <i>A</i> ted a	Azero Inda	in thone i	nis bii indica	t loca ites t	tion i hat i	ndica t is n	a device tes that ot. The a one.	
9:0	Not I	Used	i	These	e bits	are n	ot us	ed by	the '	V157	and r	returr	ned as	s ones	€.		

Write Signal Register

The Write Signal Register is a write-only register located at an offset of 08_{16} from the A16. Logical Base Address of the V157. A write operation to this register address accesses the Signal Register. This register is used for device to device signaling. This register can be read at offset $3C_{16}$ in A16 address space. A signal received from a device contains the devices'

Logical Address along with a field for device specific information. There are two different formats for the Signal Register, depending on the value of the most significant bit (bit 15). The following two diagrams show the various formats.

	,														08	h
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write-only	0			F	Respons	se					[_ogical	Addres	s	····	
															08	h
p	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write-only	1				Event						L	_ogical	Addres	s		

The fields shown for the two Signal Register patterns are as follows:

Response: This field reflects bits 14 through 8 of the device's Response Register.

Event: This field reflects the event associated with the signal.

Logical Address: This field reflects the Logical Address of the device generating the signal.

Response Register

The Response Register is a read-only register located at an offset of $0A_{16}$ from the A16 Logical Base Address of the V157. This register is used to return the status of a device's communication registers and their associated functions. The following diagram shows the bit layout for the Response Register on the V157.

0Ah

		,											_	_	•	•
Read-only	0	1	0	0	ERR*	READ	WRT	1	1	1	1	1	1	1	1	1
						RDY	RDY									
Bit(s) 15		Inem lot Us	onic sed		\mathbf{T}	his bi	t is n		anin ed an	_	d as a	ı zero	•			
14	N	lot Us	sed	This bit is not used and read as a one.												
13:12	N	lot Us	sed	These two bits are not used by the V157 and returned a zeros.												
11	Е	RR														
10	R	EAD	RDY		th Tl	EAD at the bis since the contract the contra	e der t is s	vice's et to	Data a one	a Reg	ister execu	(s) co ting a	ntair a wri	data te ope	a to eratio	be-re on to

Bit(s)	Mnemonic	Meaning bit set to a one. After the READ READY bit has been set, it is cleared when the Data Low Register is read.
9	WRT RDY	WRITE READY is a read-only bit that is set to a one indicating that the device is ready for data transfers to its Data Register(s). This bit is set to a one by executing a write to the Miscellaneous Control Register with the SET WRITE READY bit set to a one. After the Data Low Register is written, the WRITE READY bit is cleared.
8:0	Not Used	These bits are not used by the V157 and read as ones.

Data Low Register

The Data Low Register is a write/read register located at an offset of 0E₁₆ from the A16 Logical Base Address of the V157. This register is used communicate data between two Message Based Devices. Accessing this register causes the appropriate flags to be set/cleared in the Response Register. Please refer to the Response Register for additional information.

The following diagram shows the bit pattern for the Data Low Register.

															0E	ìh
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read-Write	DL															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	1

Bit(s) Mnemonic 15:0 W/R15:0

Meaning
WRITE/READ DATA 15 through 0 are write/read bits used

to communicate data between two Message Based Devices.

Suffix High Register

The Suffix High Register is a read-only register located at an offset of 20₁₆ from the A16 Logical Base Address of the V157. This register is used in combination with the Suffix Low Register to determine the module model number suffix. The Suffix High Register contains the first two ASCII characters of the suffix and the Suffix Low Register contains the last two characters. The suffix shown is for the V157-AA21 module.

The bit pattern for the Suffix High Register is as follows:

															20	h	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Read-only	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	1	

Suffix Low Register

The Module Suffix Low Register is a read-only register located at an offset of 22₁₆ from the A16 Logical Base Address of the V157. This register is used in combination with the Suffix High Register to determine the module model number suffix. The Suffix Low Register contains the last two ASCII characters of the suffix and the Suffix High Register contains the first two characters. The suffix shown is for the V157-AA21 module.

The bit pattern for the Suffix Low Register is as follows:

															22	h
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read-only	0	0	1	1	0	0	1	0	0	0	1	1	0	0	0	1

Serial Number High Register_

The Serial Number High Register is a read-only register located at an offset of 24₁₆ from the A16 Logical Base Address of the V157. This register is used in conjunction with the Serial Number Low Register to define the serial number of the V157. The following diagram shows the bit pattern of the Serial Number High Register.

					. *			1							24	h
	15	14	13	12	11	10	9 🖟	8	7	6	5	4	3	2	1	0
Read-Only	SN	SN	SN	SN	SN	SN	SN	SN	SN	SN	SN	SN	SN	SN	SN	SN
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16

Serial Number Low Register

The Serial Number Low Register is a read-only register located at an offset of 26₁₆ from the A16 Logical Base Address of the V157. This register is used in conjunction with the Serial Number High Register to define the serial number of the V157. The following diagram shows the bit pattern of the Serial Number Low Register.

															26	h
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read-Only	SN															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Module ID Register

The Module ID Register is a write/read register located at an offset of 28₁₆ from the A16 Logical Base Address of the V157. The Module ID Register is used to control the MODID geographic addressing lines on the VXI P2 connector. Each of the 13 slots of a VXI chassis has an individual line that can be asserted and monitored through the Module ID Register. Before any of the MODID lines can be asserted by the V157, the Output Enable bit (bit 13) of this register

must be set to a one. When the outputs are enabled, setting a MODID bit location to a one asserts the corresponding MODID signal.

The data read from this register does not necessarily reflect the data written. Instead, a read of this register returns the actual state of the MODID signals on the VXI backplane.

The following diagram shows the bit pattern for the Module ID Register.

															28	\mathbf{h}	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Read-Write	0	0	MID	MID	MID	MID	MID	MID	MID	MID	MID	MID	MID	MID	MID	MID	
			ENA	12	11	10	9	8	7	6	5	4	3	2	1	0	
Bit(s) 15:14		Mne i Not U	moni Jsed	c	Meaning These bits are not used and read as ones.												•
13	Ī	MID :	ENA		MODID OUTPUT ENABLE is a write/read bit used to enable/disable the V157 from driving the MODID signals Setting this bit to a one enables the drivers and a zero disables them.												
12:0]	MID1	2:0		mon	itor t	he 13	MO:	DID 8		ls. V	Vritin	g a b			sert a	

Interrupt Status Register

The Interrupt Status Register is a read-only register located at an offset of $2A_{16}$ from the A16 Logical Base Address of the V157. The contents of this register are enabled onto the VMEbus during an interrupt acknowledge cycle. This register contains the Logical Address of the V157 in the lower 8-bits of the register and the upper 8-bits contains the cause/status of the interrupt. The lower 8-bits of this register return the Logical Address of the V157 only for interrupt acknowledges cycles. An I/O read of this field returns all 8-bits set to ones.

The V157 has two interrupt sources. One of the sources is from a pre-selected VXI Trigger input and the other source is from Location Monitors. The VXI interrupt sources are enabled through the Trigger Interrupt Mask Register located at offset $2E_{16}$. The Location Monitor interrupt sources are enabled through the Location Monitor Interrupt Control Register located at an offset of $3A_{16}$. These two registers must be appropriately enabled before the V157 can generate an interrupt source. The interrupt source(s) may then generate a VXI interrupt request when interrupts are enabled in the Interrupt Control Register located at an offset of $2C_{16}$.

The interrupt acknowledge (IACK) cycle executed by the Interrupt Handler reads a 16-bit value from the V157. The lower 8-bits of this data reflects the Logical Address of the device

generating the interrupt. The upper 8-bits reflects the cause of the interrupt. Of the upper 8-bits, only 2 of them are used by the V157 to relay the cause of the interrupt. Once an interrupt acknowledges cycle occurs, the interrupt source bits that were set in this register when the interrupt vector was read are reset to zero. This will also occur when the Interrupt Status Register is read.

The format of the Interrupt Status Register is as follows:

					11 10 9 8 7 6 5 4 3 2									2A	h		
OUR BESTEVANTA CONTRACTOR	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Read-Only	0	0	0	0	0	0	LOC	TRG	LA	LA	LA	LA	LA	LA	LA	LA	
							MON	IN	128	64	32	16	8	4	2	1	
Bit(s) 15:10		Mne Not U		ic				Mean not ι		and re	ead a	s zero	os.				•
9		LOC	MON	I	These bits are not used and read as zeros. LOCATION MONITOR INTERRUPT SOURCE is a read-and-clear bit that is set when an interrupt source is generated by one of the Location Monitor Interrupts enabled in the Location Monitor Interrupt Control Register. To find out the actual cause of the location monitor interrupt, the Location Monitor Interrupt Control Register must be consulted.												
8		TRG	IN		Monitor Interrupt Control Register. To find out the actual cause of the location monitor interrupt, the Location Monitor												the upt out
7:0		LA12	8:1		of th	ie V1	57 du	ring	SS 12 an in bits	terru	pt ac	know	ledge	ne Lo _l cycle	gical to th	Addro ne V1	ess 57.

Interrupt Control Register

The Interrupt Control Register is a write/read register located at an offset $2C_{16}$ from the A16 Logical Base Address of the V157. This register is used to configure the V157 for interrupt sourcing. The Interrupt Request Level, Interrupt Enable, and Interrupt Source Mask are contained in this register.

The format and description of the Interrupt Control Register are shown in the following diagram.

								20	Ch								
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Read-Write	1	1	1	1	1	1	LOC	TRG	IR	1	IRQ	IRQ	IRQ	1	1	1	
4.20		<u> </u>					MON*	IN*	ENA*		S3	S2	S1				
Bit(s) 5:10		Mne r Not U		e	The	se bi	ts are	Mean		and ro	ead a	s one	s.				
9		LOC 1	MON ⁻	*	LOCATION MONITOR INTERRUPT ENABLE is a write/read bit used to enable and disable the generation of a VXI interrupt when one of the Location Monitor interrupt sources are enabled in the Location Monitor Interrupt Control Register. Setting this bit to a one disables the Location Monitor interrupts and zero enables the interrupt. TRIGGER IN INTERRUPT ENABLE is a write/read bit used to												
8		TRG I	N*		TRIGGER IN INTERRUPT ENABLE is a write/read bit used to enable and disable the generation of a VXI interrupt when one of the enabled interrupt sources in the Trigger Interrupt Mask is generated. Setting this bit to a one disables the interrupts and a zero enables the interrupt.												
7		IR EN	A*		INTERRUPT REQUEST ENABLE is a write/read bit used to enable/disable the V157 from generating an interrupt request to the VMEbus. Setting this bit to a one disables the V157 from generating an interrupt request and a zero enables the interrupt request.												
6]	Not U	sed		This bit is not used and read as a one.												
5:3]	IRQS3	8:1		This bit is not used and read as a one. INTERRUPT REQUEST SELECT 3 through 1 are write/read bits used to select the desired interrupt request level that the V157 asserts when an interrupt is sourced.												ad the

2:0

The following chart shows the interrupt request level selections.

IRQ S3	IRQ S2	IRQ S1	Interrupt Request Level
0	0	0	IRQ7
0	0	1	$_{ m IRQ6}$
0	1	0	IRQ5
0	1	1	IRQ4
1	0	0	IRQ3
1	0	1	IRQ2
1	1	0	IRQ1
1	1	1	Disconnected
Not Used	Thos	a hita aya na	t used and read as ones

Trigger Interrupt Mask/Trigger Interrupt Source Register

The Trigger Interrupt Mask/Trigger Interrupt Source Register is located at an offset of $2E_{16}$ from the A16 Logical Base Address of the V157. This register serves two purposes, depending on the direction of the transfer. A write operation to this register address accesses the Trigger Interrupt Mask Register. This register is used to enable and disable interrupts to the VXI bus on the occurrence of a trigger condition. Trigger conditions include the 8 VXI TTL Trigger lines and the two ECL VXI Trigger lines. A mask bit is set to a one to enable the interrupt source and set to a zero to disable the source.

The second register at this address is the Trigger Interrupt Source Register. This read-only register is used to determine which trigger event caused the interrupt source. Each bit read as a one was involved in generating the trigger interrupt source. After an interrupt has been generated and acknowledged, the Trigger Interrupt Source Clear Register must be written with data to clear the individual interrupt source.

The following two diagrams show the two registers.

Trigger Interrupt Mask Register (Write-Only):

															$2\mathbf{F}$	Ch	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Write-Only			Not	Used			ECL	ECL	TTL	TTL	TTL	TTL	TTL	TTL	TTL	TTL	
	· · · · · · · · · · · · · · · · · · ·						TG1	TG0	TG7	TG6	TG5	TG4	TG3	TG2	TG1	TG0	
Bit(s) 15:10			mon Used	ic	The any	ese bi effec	ts are	Mean e not the V	used	and s	settin	g the	m to	ones	does	not h	ave
9:8		ECL	TG1:	0	gen Trig	erati gger l	IGGE on of line is nd a z	a VXI asse:	I inte rted.	rrupt A bi	where t set 1	n the to a o	corre ne en	spond ables	ding V	VXI-E	CL

Bit(s)	Mnemonic	Meaning
7:0	TTL TG1:0	TTL TRIGGER 7 and 0 are write-only bits used to enable the generation of a VXI interrupt when the corresponding VXI TTL Trigger line is asserted. A bit set to a one enables the interrupt source and a zero disables the interrupt source.

Trigger Interrupt Source Register (read-only):

															2E	2 h	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Read-Only			Not I	Jsed			ECL	ECL	TTL	TTL	TTL	TTL	TTL	TTL	TTL	TTL	
							TG1	TG0	TG7	TG6	TG5	TG4	TG3	TG2	TG1	TG0	
Bit(s) 15:10	Mner Not U		c		The	- ese bit	ts are	Mean not u	ning ased a	and re	ead as	s zero	os.	•			l
9:8	ECL'	ΓG1:0)		are the Mas	read corre	as a espon was	one v ding enabl	when VXI led. I	the V ECL Readi	7157 Trig ng th	has r ger is bit	eceiveline as a	ed th and t zero i	e asso the Indica	oits tlertion nterru ates tl	ı of unt
9:8	TTL	ΓG7:0			that asse Inte indi	t are ertion errupt	read of the Mas that	l as ne co: sk bit the	a or rresp was	ne wl ondin enal	hen t ig VX oled.	he V I TT Rea	/157 L Tr: ding	has igger this	recei line bit as	only bound to the second terms of the second t	the the ero

Trigger Interrupt Source Clear Register

The Trigger Interrupt Source Cleat Register is a write-only register located at an offset of 30₁₆ from the A16 Logical base Address of the V157. This register is used to clear the Interrupt Source bits in the Trigger Interrupt Source Register once they have been set by the receipt of a preselected trigger input. Any bit location set to a one when writing to this register clears the corresponding Interrupt Source bit. Any bit set to a zero has not effect on the Interrupt Source.

Model V157

The following diagram shows the bit layout for the Trigger Interrupt Source Clear Register.

															30	h	
,	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Write-Only			Not	Used			ECL	ECL	TTL	TTL	TTL	TTL	TTL	TTL	TTL	TTL	
						· ······	TG1	TG0	TG7	TG6	TG5	TG4	TG3	TG2	TG1	TG0	
Bit(s) 15:10		e mo i Used			The	se bi effect	ts are	Mean e not e V15	used.	. Any	y wri	te to	$ ext{these}$	bit l	ocatio	ons ha	ave
9:8	ECI	L TG:	1:0		CLEAR ECL TRIGGER INTERRUPT SOURCE 1 and 0 are write-only bits used to clear the corresponding ECL trigger interrupt source once set by the assertion of the signal.											are ger	
7:0	TTI	$_{ m TG7}$	7:0		are	write	-only	TRIG bits ce on	used	to cle	ear th	e cor	respo	nding	TTI	rough trigg	ı 0 ger

Trigger Source Register

The Trigger Source Register is a write-only register located at an offset of 32₁₆ from the A16 Logical Base Address of the V157. This register is used to source the VXI ECL, VXI TTL. This register allows the trigger signals to be either asserted, negated or pulsed. The binary combination of bits 15 and 14 of this register determine what action is to be taken on the selected trigger signals. The following chart shows the binary combination of the control bits and the effect they have on the selected trigger signals.

CNTL1	CNTLO	Effect On Trigger Signal
0	0	Assertion
0	1	Negation
1	0	Pulse
1	1	Reserved

When a trigger is asserted through the Trigger Source Register, it remains asserted until either a reset condition occurs or the Trigger Source Register is written to negate the trigger signal. A pulsed output lasts for approximately 1.5 microseconds.

The following diagram shows the bit pattern for the Trigger Source Register.

														32h		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write-Only	CN	TL 1		Not	Used		ECL	ECL	TTL	TTL	TTL	TTL	TTL	TTL	TTL	TTL
						amar	TG0	TG0	TG7	TG6	TG5	TG4	TG3	TG2	TG1	TG0
Bit(s) 15:14		Mne CNT	mon i [.1:0	ic	CO.	NTR(Mean		40 HI	rita ar	aler b	44	1	, 1	<i>C</i> *
					ope bina on t requ	ration ary co the se	n to b ombin electe	e per ation d trig	forme of the gger	ed on nese k signal	the r pits do ls. T	eques eterm he pr	sted t ine v eviou	rigge what a s cha	r sigr action art sh	fine the nal. The n to take nows the e trigger
13:10		Not U	Jsed		The patt	se bi ern,	ts ar	e not	use	d and	l may	y be	writt	en w	ith a	ny data
9:8		ECL '	TG1:()	regi bits to a	ster t to oc zerc	o allo cur to	w the the n wr	e sele VXI riting	cted ECL	opera Trigg	ition : er lin	specia nes. <i>A</i>	fied b Anv t	y the	to this control bit set on the
7:0	,	TTL 7	ΓG7:0)	this cont bit s	regis rol bi set to	ster t ts to	o allo occur ro wh	ow tł to tł ien w	ne sel ne VX	lected I TT	l opei L Tris	ratior gger]	n spe lines.	cified Anv	by the trigger

Trigger Timer Configuration Register

The Trigger Timer Configuration Register is a write-only register located at an offset of 34₁₆ from the A16 Logical Base Address of the V157. This register is used to configure the timer interval and specify the trigger signals to assert once the Trigger Timer expires. The Trigger Timer, a 32-bit modulo-n type counter, can be tied to any or all of the trigger signals. At a predetermined interval, the enabled trigger signals are pulsed for a period of approximately 1.5 microseconds.

The actual register accessed through this A16 address offset is determined by the four most significant bits of the Miscellaneous Control Register at offset 3C₁₆. The binary combination of these four bits specify the register to be accessed as shown in the following table.

RSEL3	RSEL2	RSEL1	RSEL0	Register Accessed
0	0	0	0	Trigger Timer Low
0	0	0	1	Trigger Timer High
0	0	1	0	Reserved
0	0	1	1	$\operatorname{Reserved}$
0	1	0	0	$\operatorname{Reserved}$
0	1	0	1	$\operatorname{Reserved}$
0	1 .	1	0	$\operatorname{Reserved}$
0	1	1	1	$\operatorname{Reserved}$
1	0	0	0	Trigger Timer Control
1	0	- 0_,	1	Reserved
1	0	1	0	$\operatorname{Reserved}$
1	0	1	1	Reserved
1	1	0	0	Reserved
1	1	0	1	Reserved
1	1	1	0	$\operatorname{Reserved}$
1	1	1	\downarrow 1	Reserved

A Trigger Timer is configured by first loading the Trigger Timer High Register and Trigger Timer Low Register. The Trigger Timer Low Register is used in conjunction with the Trigger Timer High Register for establishing the timer interval. This 32-bit counter is programmable from 2 microseconds to 429 seconds in 100 nanosecond increments. The data value loaded into the combination of the Trigger Timer Low and High Registers is the quantity of 100 nanosecond increments between trigger assertions. For example, to obtain an interval of 1 millisecond, the 32-bit timer must be loaded with data set to 10000 (2710₁₆). Therefore, the Trigger Timer High Register is loaded with 0 and the Trigger Timer Low Register is loaded with 10000 (2710₁₆).

The following diagram shows the bit pattern for the Trigger Timer High Register.

															34	h
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write-Only	TMR															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16

Bit(s) Mnemonic Meaning

15:0 TMR31:16 TIMER DATA 31 through 16 are write-only bits used to establish the interval at which trigger signals are asserted. This register is used in combination with the Trigger Timer Low Register to determine the number of 100 nanosecond increments between trigger assertion.

The following diagram shows the bit pattern for the Trigger Timer Low Register.

															34	h	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Write-Only	TMR	ĺ															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

Bit(s) Mnemonic Meaning

15:0 TMR15:0

TIMER DATA 15 through 0 are write-only bits used to establish the interval at which trigger signals are asserted. This register is used in combination with the Trigger Timer High Register to determine the number of 100 nanoseconds increments between trigger assertions.

The Trigger Timer Control Register contains an enable bit that allows the timer to operate. This register also contains the 10 trigger source bits which determine the trigger signals to assert once the timer expires. Any trigger signal bit set to a one in this register is asserted once the timer expires. The following diagram shows the bit layout for the Trigger Timer Register.

							2							34h		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write-Only	TMR		N	lot Use	d .		ECL	ECL	TTL							
	ENA			*******			TG1	TG0	TG7	TG6	TG5	TG4	TG3	TG2	TG1	TG0

Bit(s) Mnemonic Meaning

15 TMR ENA

TIMER ENABLE is a write-only bit used to enable and disable the timer from operating. Setting this bit to a one enables the timer and a zero disables the timer.

14:10 Not Used

These bits are not used and may be written with any data pattern.

9:8 ECL TG1:0

VXI ECL TRIGGER1 and 0 are write-only bits used to enable the assertion of the corresponding VXI ECL Trigger signal once the timer expires. A zero in a bit location prevents the signal from being asserted once the timer expires.

7:0 TTL TG7:0

VXI TTL TRIGGER7 through 0 are write-only bits used to enable the assertion of the corresponding VXI TTL Trigger signal once the timer expires. A zero in a bit location prevents the signal from being asserted once the timer expires.

Location Monitor Interrupt Control Register

The Location Monitor Interrupt Control Register is a write/read register located at an offset of $3A_{16}$ from the A16 Logical Base Address of the V157. This register is used to enable/disable the generation of an interrupt to VXI when an access is made to the Message Based communication registers. This includes a write to the Signal Register, a write to the Data Register, a read from the Data Register, or a Message Based Device ERROR is encountered. This register contains an interrupt enable bit for each of the four sources along with four bits used to clear the interrupt source.

The following diagram shows the bit layout of the Location Monitor Interrupt Control Register.

MY Williams on help bring on how	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read/Write	0	0	0	0	0	0	0	0	ERR	WRT	RD	WRT	ERR	WDAT	RDAT	WSGL
								<u> </u>		DATA	DATA	SGNL	ΙE	IE	ΙE	IE

Bit(s) Mnemonic Meaning

15:8 Not Used

These bits are not used and read as zeros.

7 ERR

ERROR INTERRUPT SOURCE is a write/read bit which is used to read and to clear the interrupt source generated from an ERROR interrupt. Reading this bit as a one indicates an interrupt source is pending from this ERROR source. A write operation with this bit set to a one clears the interrupt source.

6 WRT DATA

WRITE DATA INTERRUPT SOURCE is a write/read bit used to read and to clear the interrupt source generated from writing to the Data Register during a Message Based device transaction. Reading this bit as a one indicates an interrupt source is pending from the Write Data Register source. A write operation with this bit set to a one clears the interrupt source.

5 RD DATA

READ DATA INTERRUPT SOURCE is a write/read bit used to read and to clear the interrupt source generated from reading the Data Register during a Message Based Device transaction. Reading this bit as a one indicates an interrupt source is pending from a Read Data Register source. A write operation with this bit set to a one clears the interrupt source.

4 WRT SGNL

SIGNAL INTERRUPT SOURCE is a write/read bit used to read and to clear the interrupt source generated from writing the Signal Register during a Message Based Device transaction. Reading this bit as a one indicates that an interrupt source is pending from a write to the Signal Register. A write operation with this bit set to a one causes the interrupt source to be cleared.

3 ERR IE

ERR INTERRUPT ENABLE is a write-only bit used to enable and disable the generation of an interrupt source when an error is encountered during

a Message Based Device transaction. Setting this bit to a one enables the interrupt source and a zero disables the source.

- WDAT IE WRITE DATA INTERRUPT ENABLE is a write-only bit used to enable/disable the generation of an interrupt source when the Data Register is written during a Messaged Based Device transaction. Setting this bit to a one enables the interrupt source and a zero disables the source.
- READ DATA INTERRUPT ENABLE is a write-only bit used to enable/disable the generation of an interrupt source when the Data Register is read during a Message Based Device transaction. Setting this bit to a one enables the interrupt source and a zero disables the source.
- O SGNL IE WRITE SIGNAL INTERRUPT ENABLE is a write-only bit used to enable/disable the generation of an interrupt source when the Signal Register is written during a Message Based Device transaction. Setting this bit to a one enables the interrupt source and a zero disables the source.

Interrupt Status ID Register

The Interrupt Status ID Register is a read-only register located at an offset of 3A₁₆ from the A16 Logical Base Address of the V157. This register is used to read the 16-bits of data received from the V157 during an interrupt acknowledge cycle on the VXIbus. Since the SBC only supports an 8-bit interrupt vector, an external mechanism has been provided to latch the entire 16-bit of interrupt vector information. The following diagram shows the bit pattern for the Interrupt Status ID Register.

															3Ah					
See a second	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
Read-Only	ISRC	LA	LA	LA	LA	LS	LA	LA	LA											
	7	6	5	4	3	2	1	0	128	64	32	16	8	4	2	1				

Bit(s) Mnemonic Meaning

15:8 ISRC7:0 INTERRUPT SOURCE 7 through 0 are read-only bits which reflect the interrupt source bits set by then interrupting VXI module during the interrupt acknowledge cycle.

7:0 LA128:1 LOGICAL ADDRESS 128 through 1 is read-only bits used to determine the Logical Address of the interrupting VXI module.

Miscellaneous Control Register

The Miscellaneous Control Register is a write-only register located at an offset of $3C_{16}$ from the A16 Logical Base Address of the V157. This register is used to set and clear the ERR bit in the Response Register of the V157, to set the WRITE READY and READ READY bits in the Response Register, and to control which buried register is accessed through the Trigger Timer Configuration Register address. The following diagram shows the bit pattern for the Miscellaneous Control Register.

															30	C h	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Write-Only	RESL	RESL	RESL	RESL	MFG		,,,,,,,	ı	lot Use	*****	SET	SET	SET	CLR			
	3	2	1	0	BIT								WRDY	RRDY	ERR	ERR	

Bit(s) Mnemonic Meaning – 15:12. RSEL3:0 REGISTER SEL

REGISTER SELECT3 through 0 are write-only bits used to specify which buried register is to be accessed when writing to the Trigger Timer Configuration Register as shown in the following table.

RSEL3	RSEL2	RSEL1	RSEL0	Register Accessed
0	0	0	. 0	Trigger Timer Low
0	0	0	1	Trigger Timer High
0	0	1	0	Reserved
0	0	1	1	Reserved
0	1	0	0	Reserved
0	1	0	1	Reserved
0	1	1	0	Reserved
0	1	1	1	Reserved
1	0	0	0	Trigger Timer Control
1	0	0	1	Reserved
1	0	1	0	Reserved
1	0	1	1	$\operatorname{Reserved}$
1	1	0	0	$\operatorname{Reserved}$
1	1	0	1	$\operatorname{Reserved}$
1	1	1	0	$\operatorname{Reserved}$
1	1	1	1	$\operatorname{Reserved}$

MANUFACTURING BIT is write-only bit used to test the V157 during the manufacturing process. This bit must be set to a zero when writing to this register.

10:4 Not Used These bits are not used and must be set to zeros.

3 SET WRDY SET WRITE READY is a write-only bit used to set the WRITE READY bit in the Response Register to a one.

2	SET RRDY	SET READ READY is a write-only bit used to set the READ READY bit in the Response Register to a one.
1	SET ERR	SET ERROR is a write-only bit used to set the ERROR bit in the Response Register to a one.
0	CLR ERR	CLEAR ERROR is a write-only bit used to clear the ERROR bit in the Response Register to a zero.

Read Signal Register

The Read Signal Register is a read-only register located at an offset of $3C_{16}$ from the A16 Logical Base Address of the V157. A write operation to the Signal Register is addressed to offset 08_{16} . This register is used for device to device signaling for message based devices. A signal received from a device contains the devices' Logical Address along with a field for device specific information. There are two different formats for the Signal Register, depending on the value of the most significant bit (bit 15). The following two diagrams show the various formats.

															30	<i>i</i> n	
test felt ortanion o company	15	14	13	12	.11	10	9	_\ 8	7	6	5	4	3	2	1	0	
Read-Only	0			R	Response	se	· >	*		Logical Address							
															30	Ch	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Read-Only	1				Event					,,,,,,	1	ogical	Addres	s			

The fields shown for the two Signal Register patterns are as follows:

Response: This field reflects bits 14 through 8 of the device's Response Register.

Event: This field reflects the event associated with the signal.

Logical Address: This field reflects the Logical Address of the device generating the signal.

Version Number Register

The Version Number Register is a read-only register located at an offset of $3E_{16}$ from the A16 Logical Base Address of the V157. This register is read to determine the revision number of the V157's firmware and hardware. The initial revision of the V157 has a firmware revision level of 1.0 and a hardware version of 1.0.

The following two diagrams show the various fields of the Version Number Register along with a bit pattern for the initial version.

	r														3	Eh	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	Firmw	are	Main	Version	Firmw	are i	Minor	Version	Hardw	are	Major	Version	Hardw	are	Minor	Version	
	Numb	er			Numb	er			Numb	er			Numbe	er			
															3	Eh	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Read-Only	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	
Bit(s) 15:12	Mne n Firmv			Versi	on		Th	eaning lese bi mware	its re	flect	the	main	versi	on :	numb	er of t	the
11:8	Firmv	vare	Mino	r Vers	sion			iese bi mware		flect	the	minor	vers	ion	numb	er of t	the
7:4	Hardware Main Version							ese bi rdware		flect	the	main	versi	on 1	numb	er of t	the
3:0	Hardy	vare	Mino	r Vers	sion			ese bi rdwar		flect	the	minor	versi	ion :	numb	er of t	he

VXI Transfers

This section of the manual provides basic information on executing VXIbus transfers using the V157. For a complete description of VXIbus (VME) transfers, please refer to the CES SBC manual. The manual for the 8072 RIO processor can be located at www.ces.ch/index.html.

VXI data transfers can be performed using two methods. In the first method, the operating system kernel can be built to directly map sections of A16, A24 and A32 VME space into processor space. The second method is to map the A16, A24 or A32 space as required by the bus operation.

Please refer to the CES Board Support Package for additional details on directly mapping VME address space into processor space.

For reference, an example sequence is shown to map, access and un-map VXI address space. The following is a snippet of code to execute a 32-bit data transfer to A32 address space.

```
#include <vxWorks.h>
#include "sgVme.h"
void long_a32_read(unsigned long address, unsigned long *data,
                   long *status )
{
      int TransferType = VME_ATYPE_A32 | VME_DTYPE_STD | VME_PTYPE_USER;
      int size = 0x100000;
      unsigned short srdata;
      unsigned long lrdata;
      unsigned long *pLocalAdr;
      long err;
      err=0;
     pLocalAdr = NULL;
     if (vmeMasterMapDirect((char*)address, size, TransferType, (char
**) &pLocalAdr) != OK)
           printf("Error in long_a32 read mapping VME\n");
      }
     else
      {
           lrdata = *(unsigned long*)pLocalAdr;
           *data = lrdata;
     if (vmeMasterUnmap ((char*)pLocalAdr, size) != OK)
           printf("Error in long_a32_read un-mapping VME\n");
           err=1;
     *status = err;
}
```

VXI Triggers

The V157 supports the eight VXI TTL trigger lines as well as the two VXI ECL trigger lines. The V157 hardware supports the Stop/Start protocol and the Synchronous protocol for asserting the VXI trigger lines.

The Start/Stop protocol provides a mechanism to assert a trigger line under computer control and maintain the signal level until the trigger line is negated by programmed control. This can be useful for generating a trigger signal completed under computer control. The Synchronous protocol permits the V157 to generate a pulse on a trigger line for a duration of approximately 1.5 microseconds. The computer merely writes to the Trigger Source Register with the trigger signal(s) to be asserted.

Synchronous Trigger Example:

As an example, assume it is desired to apply a 1.5 microsecond pulse to VXI trigger line 2. The V157 is set for Logical Address 0, which results in a A16 Logical Base Address of C000₁₆. This can be accomplished by writing to the Trigger Source Register, at an offset of 3216 from the A16 Logical Base Address of the V157, with the data set to 8804₁₆.

Shown in pseudo-code, the trigger may be generated as follows:

```
short_a16_write (0xC032, 0x8004);
```

/* 16-bit A16 write to address 0xc032 with data of 0x8004 */

Start/Stop Trigger Example:

As an example, assume it is desired to apply assert VXI trigger line 5 and the ECL trigger line 0, wait for a period of time, negate ECL trigger 0, wait for a period of time, and then negate VXI trigger line 5. The V157 is set for Logical Address 0, which results in a A16 Logical Base Address of C000₁₆.

Shown in pseudo-code, the trigger sequence can be generated as follows:

short_a16_write (0xC032, 0x120);

/* 16-bit A16 write to address 0xc032 with data of 0x120 */

/* to assert TTL trigger line 5 and ECL trigger line 0

taskDelay (1); short_a16_write (0xc032, 0x4100);

/* delay for a period of time */ /* 16-bit A16 write to address 0xc032 with data of 0x4100 */

/* to negate ECL trigger line 0 */

taskDelay (1); short_a16_write (0xc032, 0x4020);

/* delay for a period of time */ /* 16-bit A16 write to address 0xc032 with data of 0x4020 */ /* to negate TTL trigger line 5 */

The trigger lines may also be connected to a hardware timer to assert them at a predetermined interval. The interval counter (timer) is based off of the CLK10 10 megahertz VXIbus clock and contains 32 bits. When the timer expires, a 1.5 microsecond pulse is applied to the pre-selected trigger line(s). The 32-bit counter yields an interval from 2 microseconds to 429 seconds in 100

nanosecond increments. The 32-bit timer value is split into two 16-bit values that are loaded into the Trigger Timer High and Trigger Timer Low Registers. Please refer to the Trigger Timer Registers for additional information on timer operation.

As an example, assume it is desired to setup VXI TTL trigger line 4 to be pulsed every 1 millisecond. For this example, the Trigger Timer High Register must be loaded with 0, the Trigger Timer Low Register must be loaded with 2710₁₆, and the Trigger Timer Control is loaded with 8010₁₆. The V157 is set for Logical Address 0, which results in a A16 Logical Base Address of C000₁₆.

Shown in pseudo-code, the trigger sequence can be setup as follows:

short_a16_write (0xC03C, 0x00);

/* 16-bit A16 write to address 0xc03c with data 0f 0x00 */

/* set the register select bits to zero in the

misc. control register */

short_a16_write (0xC034, 0x2710);

/* 16-bit A16 write to address 0xc034 with data of 0x2710 */

/* load the timer data into the timer data low register */

short_a16_write (0xC03C, 0x1000);

/* 16-bit A16 write to address 0xc03c with data of 0x1000 */

/* set register select bits to point to timer data high register */

short_a16_write (0xC034, 0x00);

/* 16-bit A16 write to address 0xc034 with data of 0x00 */

 $^{\prime *}$ load the timer data into the timer data high $^{*\prime}$

short_a16_write (0xC03C, 0x8000);

/* 16-bit A16 write to address 0xc03c with data of 0x8000 */

/* set register select bits to point to timer control register */

short_a16_write (0xC034, 0x8010);

/* 16-bit A16 write to address 0xc034 with data of 0x8010 */

 \slash load enable timer and TTL trigger line 4 \slash

After the timer is setup and enabled, a 1.5 microsecond pulse is generated on VXI TTL trigger line 4 every 1 millisecond. To stop the timer, the Timer Enable bit in the Timer Control Register must be set to zero.

Along with the ability to assert VXI trigger lines, the V157 can also respond to the assertion of these signals asserted by other devices. The V157 can respond to these signals by either polling or by an interrupt. Once an enabled trigger source is received by the V157, it is latched and 'held' until cleared by programmed control. To setup a specific trigger line source to be received by the V157, it must first be enabled in the Trigger Interrupt Mask Register located at an offset of 2E₁₆ from the A16 Logical Base Address of the V157. This register contains individual bit positions for each of the 10 trigger sources. The trigger sources include the eight VXI TTL trigger lines and the two VXI ECL trigger lines. Each bit set to a one enables the trigger source to be latched by the V157. Once an enabled trigger source has been latched by the V157, it may be read through the Trigger Interrupt Source Register, located at an offset of 2E₁₆ from the A16 Logical Base Address. Any bit set to a one in this register may generate an interrupt request, if enabled. An interrupt source is any event that may generate an interrupt, if it is enabled in the Interrupt Control Register. The TRIGGER IN INTERRUPT ENABLE, the INTERRUPT REQUEST ENABLE and the INTERRUPT REQUEST SELECT bits must be set appropriately in order for an interrupt to be generated on the $\mathrm{VXI}\mathit{bus}$. Please refer to the Interrupt Control Register section of this manual for additional information.

Once a trigger event has been latched and read through the Trigger Interrupt Source Register, it must be cleared before subsequent trigger events may be seen on that trigger line. The latched trigger source is cleared through the Trigger Interrupt Source Clear Register located at an offset of 30₁₆ from the A16 Logical Base Address. Any bit set to a one when the register is written causes the corresponding trigger source to be reset to zero and ready for additional captures. This same routine must be followed regardless of the mechanism used to determine that a trigger event occurred.

As an example, assume it is desired to respond to the assertion of VXI trigger line 0 by asserting trigger line 1. This can be accomplished by setting up the V157 to enable VXI trigger line 0 in the Trigger Interrupt Mask Register and waiting for the source to be set in the Trigger Interrupt Source Register. This routine is using the polling technique instead of an interrupt driven mechanism. For this example, the V157 is set for Logical Address 0, which results in a A16 Logical Base Address of C000₁₆.

The pseudo-code for this example is as follows:

```
short_a16_write ( 0xC02E, 0x01);

/* 16-bit A16 write to address 0xc02e with data of 0x01 */

/* load interrupt mask register to enable VXI TTL trigger 0 */

rdata = 0;

while( rdata == 0) {

/* set a data variable to zero */

/* loop while rdata is equal to zero */

short_a16_read ( 0xC02E, &rdata );

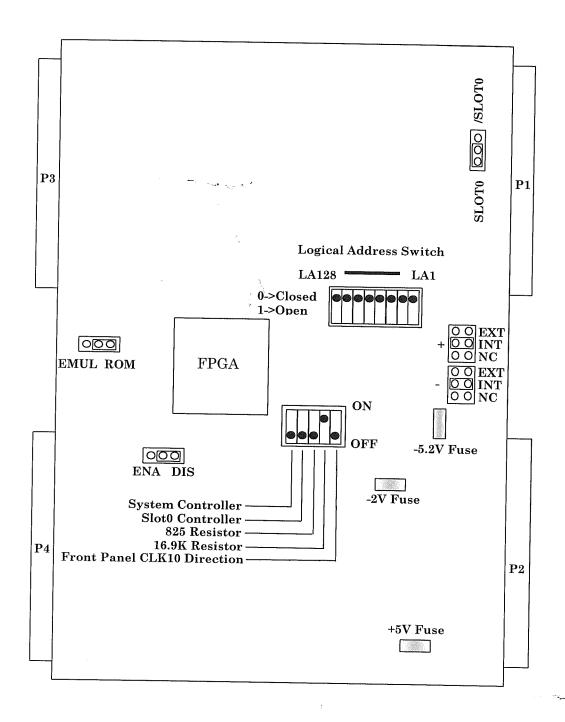
/* 16-bit A16 read to address 0xc02e and return data in rdata */

/* this is a read of the trigger interrupt source
```

register */

/* the while loop is exited once the trigger is received */

short_a16_write (0xC030, 0x01); /* 16-bit write to address 0xc030 with data of 0x01 */


/* write trigger interrupt source reg to clear TTL trigger 0 bit */

short_a16_write (0xC032, 0x8002); /* 16-bit A16 write to address 0xc032 with data of 0x8002 */

/* write trigger source register to pulse TTL trigger line 1 */

APPENDIX A

The following diagram shows the position of the various switches and strap jumpers located on the V157 adapter card.

 $\underline{Slot0\text{-}/Slot0\ Strap}$: This strap is used to configure the adapter for Slot0 or non-Slot0 operations. Since the V157 does not support non-Slot0 operations, this strap must always be left in the $\underline{Slot0}$ position.

<u>Logical Address Switch</u>: This switch is used to configure the logical address of the V157. Since the V157 can only be used as a Slot0 controller, its logical address must be set to zero (0). Logical address 0 is selected when the eight (8) logical address switches are in the closed position as shown in the preceding diagram.

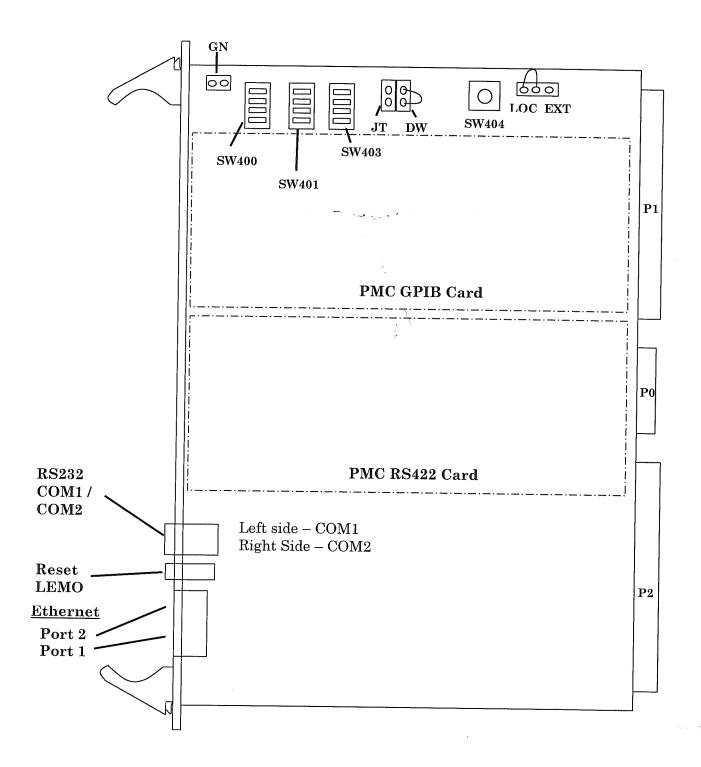
EMUL / ROM Strap: This strap is for manufacturing test and must always be loaded into the ROM position.

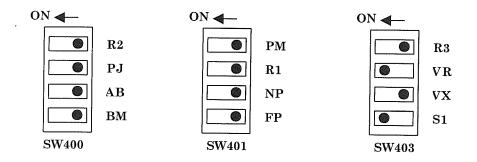
ENA/DIS Strap: This strap is used for manufacturing test. The strap must always be loaded into the **DIS** position.

EXT/ INT/ NC Straps: These straps are used to configure the source of the VXI 10 Mhz Clock signal. There is a set of straps for the + signal and the – signal. Both + and – straps must be loaded into the same labeled positions. Since the V157 can only be used as a Slot0 controller, these straps should always be in the INT position.

<u>Miscellaneous Control Switches:</u> This set of five (5) switches is used to configure various control aspects of the adapter card. Since the V157 can only be used as a Slot0 controller, the default switch settings must be used.

<u>System Controller:</u> This switch location is used to configure the adapter as either a system controller or a non-system controller. The setting controls the direction of the bus control interface. This switch position must remain in the System Controller (SYSCNTL) position, switch OFF.


 $\underline{Slot0}$ Controller: This switch controls enables Slot0 functions on the adapter card. Since the V157 can only be used as a Slot0 controller, this switch must remain in the Slot0 position, switch OFF.


 $\underline{825\ \text{Resistor:}}$ This switch position is used as part of a Slot0 configuration. The 825 ohm resistor is connected from the VXI MODID signal to ground when used as a non-Slot0 controller and disconnected from ground when used as a Slot0 controller. Since the V157 can only be used as a Slot0 controller this switch should be in the /825 position, switch OFF/

16.9K Resistor: This switch position is used as part of a Slot0 configuration. The 16.9K ohm resistor is connected to the VXI *MODID* signal when the adapter is used as a Slot0 controller and disconnected for non-Slot0 controllers. Since the V157 can only be used as a Slot0 controller this switch should always be in the 16.9K ohm position, switch ON.

<u>Front Panel CLK10 Direction:</u> This switch position is used with integrated SBC's that have a front-panel mounted SMB for routing an external clock signal into the adapter. Since the V157 front-panel does not contain this connection path, the switch must be left in the SMB CLK10 **Out** position, switch OFF.

APPENDIX B
Single Board Computer (SBC) Switch and Connector Locations

SW400, SW401 and SW403 Switch Settings

Reference	Name	Description	Factory Default
R2	Reserved	Reserved	OFF
PJ	P0 JTAG Enable	When ON the P0 JTAG Port is enabled.	OFF
AB	Alternate Boot	When ON the FPGA backup code is loaded at start-up.	OFF
BM	Boot Mode	When ON the CPU boots with the backup version of PPCMON.	OFF
PM	P0-Mode	Determines P0 compatibility mode	OFF
R1	Reserved	Reserved	OFF
NP	NAND Flash Write Protect	When ON the NAND Flash is write protected	OFF
FP	NOR Flash Write Protect	When ON the NOR Flash is write protected	OFF
R3	Reserved	Reserved	OFF
VR	VME Reset Mode	When ON allows the SBC to source VME SYSRESET	ON
VX	VME64X	When ON enables the VME64X function. Since the V157 does not support VME64X, leave this strap in its default position.	OFF
S1	Slot 1	When ON forces the SBC to be a VME Slot1 Device. In V157 terms, this forces the unit to be a Slo0 Controller.	ON

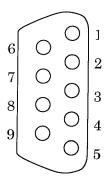
The SW404 switch is used for selecting the A24 Slave Base Address for the SBC. Since the V157 does not support slave addressing (or shared memory), this switch can be placed in any position.

SBC Strap Selections

Reference	, Name	Description	Factory Default
GN	Shield-Ground	When installed, the front panel shield (mechanical	OFF
		ground) is connected to logic ground	(removed)
m JT	$\operatorname{JTAG}\operatorname{Mode}$	When installed enables the full JTAG chain to be	OFF
70.777		scanned. Leave removed for normal operation.	(removed)
DW	Disable Watchdog	When installed disables the watchdog timers. Installed	ON
		to enable watchdog timers.	(installed)
LOC-EXT	3.3V Voltage Source	When this strap is in the LOC position, the PMC supply	LOC
ĺ		voltage of 3.3V is from a local source. When the strap is	
		in the EXT position, the PMC supply voltage of 3.3 is	
		from the VME P1 connector. Since the V157 does not	
		receive 3.3 volts from the P1 connector, the strap must	
	7.4400	remain in the LOC position.	•

APPENDIX C

This Appendix shows the allocation of signals on the $\mathrm{VXI}\mathit{bus}$ P1 and P2 Connectors.

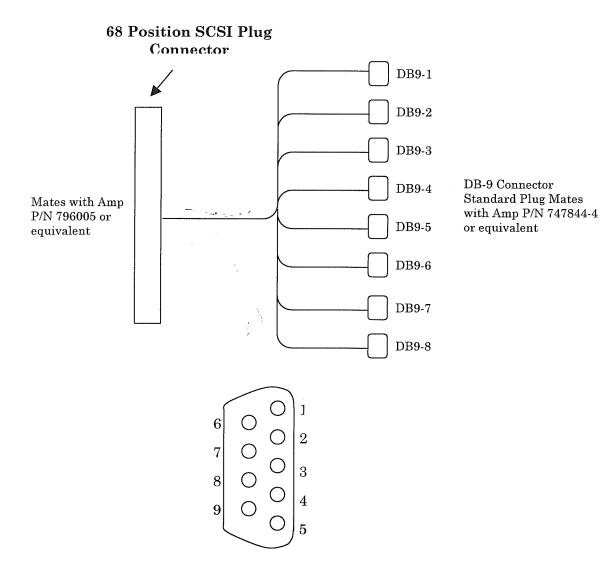

VXI P1 Connector Assignments

Pin	Row A	Row B	Row C
1	D00	BBSY*	DO8
2	D01	No Connect	D09
3	D02	No Connect	D10
4	D03	BG0IN*	D11
5	D04	BG0OUT*	D12
6	D05	BG1IN*	D13
7	D06	BG10UT*	D14
8	D07	BG2IN*	D15
9	GND	BG2OUT*	GND
10	SYSCLK	BG3IN*	SYSFAIL*
11	GND	BG3OUT*	BERR*
12	DS1*	BR0*	SYSRESET*
13	DS0*	BR1*	LWORD*
14	WRITE*	BR2*	AM5
15	GND	BR3*	A23
16	DTACK*	AM0	A22
17	GND	AM1	A21
18	AS*	AM2	A20
19	GND	AM3	A19
20	IACK*	GND	A18
21	IACKIN*	SERCLK	A17
22	IACKOUT*	SERDAT*	A16
23	AM4	GND	A15
24	A07	IRQ7*	A14
25	A06	IRQ6*	A13
26	A05	IRQ5*	A12
27	A04	IRQ4*	A11
28	A03	IRQ3*	A10
29	A02	IRQ2*	A09
30	A01	IRQ1*	A08
31	-12 V	+5 V STDBY	+12 V
32	+5 V	+5 V	+5 V

VXI P2 Connector Assignments

Pi	in	Row A	Row B	Row C
		ECLTRG0	+5 V	CLK10+
2		-2 V	GND	CLK10-
3	}	ECLTRG1	RESERVED	GND
4		GND	A24	-5.2 V
5		MODID12	A25	LBUSC00
6		MODID11	A26	LBUSC01
7		-5.2 V	A27	GND
8		MODID10	A28	LBUSC02
9		MODID09	A29	LBUSC03
10)	GND	A30	GND
1.		MODID08	A31	LBUSC04
12		MODID07	GND	LBUSC05
13		-5.2 V	+5 V	-2 V
14		MODID06	D16	LBUSC06
15		MODID05	D17	LBUSC07
16		GND	D18	GND
17		MODID04	D19	LBUSC08
18		MODID03	D20	LBUSC09
19		-5.2 V	D21	-5.2 V
20	i	MODID02	D22	LBUSC10
21		MODID01	D23	LBUSC11
22		GND	GND	GND
23		TTLTRG0*	D24	TTLTRG1*
24		TTLTRG2*	D25	TTLTRG3*
25		+5 V	D26	GND
26		TTLTRG4*	D27	TTLTRG5*
27		TTLTRG6*	D28	TTLTRG7*
28	1	GND	D29	GND
29		RESERVED	D30	RESERVED
30		MODID00	D31	GND
31		GND	GND	+24 V
32		SUMBUS	+5 V	-24 V

Serial Port(s) Connector Pinout

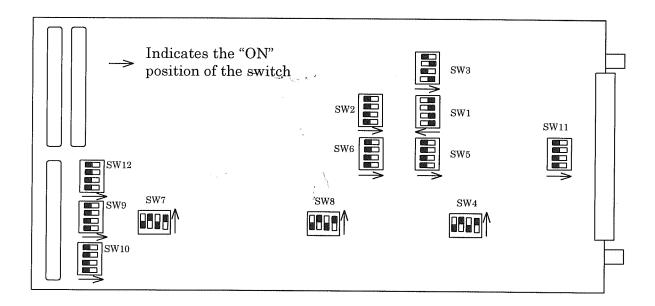

Pin Number	RS232 Function
1	DCD (Data Carrier Detect, Input)
2	RXD (Receive Data, Input)
3	TXD (Transmit Data, Output)
4	DTR (Data Terminal Ready, Input)
5	GND (Ground)
6	DSR (Data Set Ready, Input)
7	RTS (Request To Send, Output)
8	CTS (Clear To Send, Input)
9	GND (Ground)

RS-422 PMC Module Connector Pinout

The following table shows the signal allocation on the RS-422 PMC card. The front panel connector is a 68 position VHDC-style.

Pin Number	Signal		Pin Number	Signal
1	RX0-		35	RX1-
2	RX0+		36	RX1+
3	TX0-		37	TX1-
4	TX0+		38	TX1+
5	RTS0-		39	RTS1-
6	RTS0+		40	RTS1+
7	CTS0-		41	CTS1-
8	CTS0+		42	CTS1+
9	GND		43	GND
10	RX2-		44	RX3-
11	RX2+		45	RX3+
12	TX2-		46	TX3-
13	TX2+		47	TX3+
14	RTS2-	,	48	RTS3-
15	RTS2+		49	RTS3+
16	CTS2-		50	CTS3-
17	CTS2+		51	CTS3+
18	RX4-		52	RX5-
19	RX4+		53	RX5+
20	TX4-		54	TX5-
21	TX4+		55	TX5+
22	RTS4-		56	RTS5-
23	RTS4+		57	RTS5+
24	CTS4-		58	CTS5-
25	CTS4+		59	CTS5+
26	RX6-		60	RX7-
27	GND		61	GND
28	RX6+		62	RX7+
29	TX6-		63	TX7-
30	TX6+		64	TX7+
31	RTS6-		65	RTS7-
32	RTS6+		66	RTS7+
33	CTS6-		67	CTS7-
34	CTS6+		68	CTS7+

The RS-422 PMC card can utilize an optional cable to fan out the 68 position SCSI card to 9-position connectors. This cable must be ordered separately for the V157. For reference purposes the optional cable assembly is configured as follows:



Pin Number	Signal
1	RX+
2	RX-
3	TX-
4	TX+
5	GND
6	RTS+
7	RTS-
8	CTS-
9	CTS+

RS-422 PMC Card Switch Settings

This section contains information related to the switch settings on the RS-422 PMC card. The unit is configured at the factory for RS-422 operation without termination resistors.

The following diagram shows the locations of the switches on the RS-422 PMC card. Following the diagram is a chart that shows the switch settings and the functions available.

Note: For all the switch settings, a "1" representation for a setting indicates that the switch position is "Open" or "Off". A "0" representation for a setting indicates that the switch position is "Closed" or "On".

Signaling Protocol

There are four switch packs that are used to define the signaling protocol used by the card. Each switch pack controls the setup for two channels.

The following table shows the switch settings and the protocol that each defines.

Switch Position	TriState	RS232	V.35	RS422 w/Term	RS422	RS449	EIA530	EIA- 530A	V.36
4321	0000	0010	1110	0100	0101	1100	1101	1111	0110

The switch settings in the previous table are used to configure pairs of channels for the corresponding protocol. The following table shows the switch pack designator and the channels that they configure.

Switch Pack	Channels Configured	Default Setting
3	0 and 1	0101 (RS422)
4	2 and 3	0101 (RS422)
7	4 and 5	0101 (RS422)
8	6 and 7	0101 (RS422)

Half-Duplex Operation

The channels on the serial card can be configured to operate in half-duplex mode. By default, the channels are configured to operate in full-duplex.

Settings for the channels are configured through a set of two switch packs. One switch pack is for the negative legs of the signals and RTS (Request-To-Send). The second switch pack is for the positive legs of the signals.

The following table shows the individual switch positions for the negative legs of the signals and RTS.

Switch Position	Function When Closed
1	Connect RTS to Tx Enable for channel n
2	Connect RTS to Tx Enable for channel n+1
3	Connect Rx- to Tx- for channel n
4	Connect Rx- to Tx- for channel n+1

The following table establishes the relationship between the switch pack numbers and the serial channels. The individual switch position within each switch pack is defined in the previous table.

Switch Pack	Channels	Default Setting
5	0 and 1	1111 (no half-duplex)
6	2 and 3	1111 (no half-duplex)
9	4 and 5	1111 (no half-duplex)
10	6 and 7	1111 (no half-duplex)

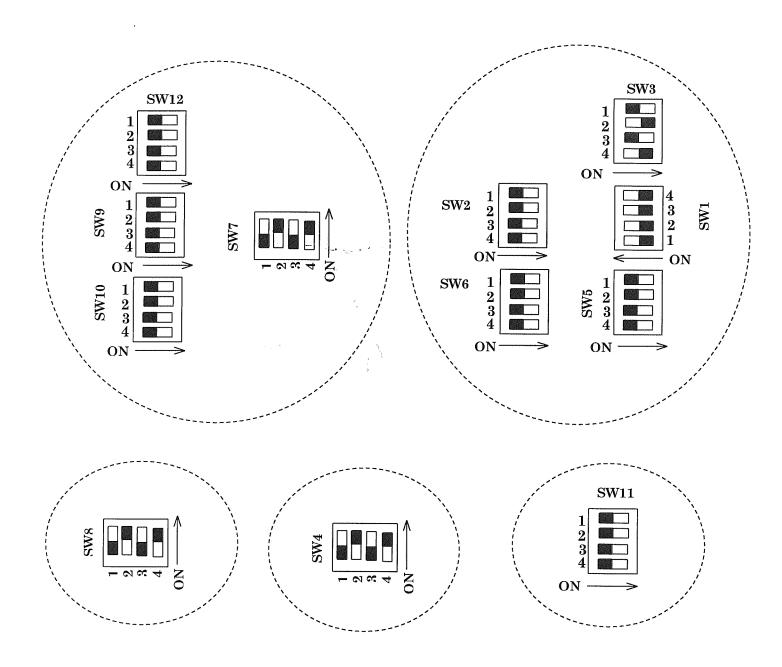
The secondary set of switch packs is used to configure the positive legs of the balanced serial signals. The function of individual switches in each switch pack is shown in the following table.

Switch Position	Function When Closed
1	Connect Rx+ to Tx+ for channel n
2	Connect Rx+ to Tx+ for channel n+1
-3	Connect Rx+ to Tx+ for channel n+2
4	Connect Rx+ to Tx+ for channel n+3

Model V157

The following table establishes the relationship between the switch pack numbers and the serial channels. The individual switch position within each switch pack is defined in the previous table.

Switch Pack	Channels	Default
11	0 through 3	1111 (no half-duplex)
12	4 through 7	1111 (no half-duplex)


Card Identification Switches

There are two switch packs located on the serial card that are used for generating a user selectable ID. These switches configure an ID that can be read through the MPIO register of the UART. This feature may be employed if the need arises to distinguish between two serial PMC cards loaded on a single carrier card. Since the V157 does not allow for additional PMC cards, only one serial PMC card will installed on a V157.

The following table shows the switch pack identifiers and the bit association for each.

Switch Pack	Bits	Default
1	0 through 3	1111
2	4 through 7	1111

Close-Up View of Switch Settings on Serial PMC Card

WARRANTY

KineticSystems warrants its standard hardware products to be free of defects in workmanship and materials for a period of one year from the date of shipment to the original end user. Software products manufactured by KineticSystems are warranted to conform to the Software Product Description (SPD) applicable at the time of purchase for a period of ninety days from the date of shipment to the original end user. Products purchased for resale by KineticSystems carry the original equipment manufacturer's warranty.

KineticSystems will, at its option, either repair or replace products that prove to be defective in materials or workmanship during the warranty period.

Transportation charges for shipping products to KineticSystems shall be prepaid by the purchaser, while charges for returning the repaired warranty product to the purchaser, if located in the United States, shall be paid by KineticSystems. Return shipment will be made by UPS, where available, unless the purchaser requests a premium method of shipment at their expense. The selected carrier shall not be construed to be the agent of KineticSystems, nor will KineticSystems assume any liability in connection with the services provided by the carrier.

The product warranty may vary outside the United States and does not include shipping, customs clearance, or any other charges. Consult your local authorized representative or reseller for more information regarding specific warranty coverage and shipping details.

PRODUCT SPECIFICATIONS AND DESCRIPTIONS IN THIS DOCUMENT SUBJECT TO CHANGE WITHOUT NOTICE.

KINETICSYSTEMS SPECIFICALLY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR ANY OTHER WARRANTY EITHER EXPRESSED OR IMPLIED, EXCEPT AS IS EXPRESSLY SET FORTH HEREIN. PRODUCT FAILURES CREATED BY UNAUTHORIZED MODIFICATIONS, PRODUCT MISUSE, OR IMPROPER INSTALLATION ARE NOT COVERED BY THIS WARRANTY.

THE WARRANTIES PROVIIDED HEREIN ARE THE PURCHASER'S SOLE AND EXCLUSIVE REMEDIES ON ANY CLAIM OF ANY KIND FOR ANY LOSS OR DAMAGE ARISING OUT OF, CONNECTED WITH, OR RESULTING FROM THE USE, PERFORMANCE OR BREACH THEREOF, OR FROM THE DESIGN, MANUFACTURE, SALE, DELIVERY, RESALE, OR REPAIR OR USE OF ANY PRODUCTS COVERED OR FURNISHED BY KINETICSYSTEMS INCLUDING BUT NOT LIMITED TO ANY CLAIM OF NEGLIGENCE OR OTHER TORTIOUS BREACH, SHALL BE THE REPAIR OR REPLACEMENT, FOB FACTORY, AS KINETICSYSTEMS MAY ELECT, OF THE PRODUCT OR PART THEREOF GIVING RISE TO SUCH CLAIM, EXCEPT THAT KINETICSYSTEMS' LIABILITY FOR SUCH REPAIR OR REPLACEMENT SHALL IN NO EVENT EXCEED THE CONTRACT PRICE ALLOCABLE TO THE PRODUCTS OR PART THEROF WHICH GIVES RISE TO THE CLAIM. IN NO EVENT SHALL KINETICSYSTEMS BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOSS OF PROFITS.

Products will not be accepted for credit or exchange without the prior written approval of KineticSystems. If it is necessary to return a product for repair, replacement or exchange, a Return Authorization (RA) Number must first be obtained from the Repair Service Center prior to shipping the product to KineticSystems. The following steps should be taken before returning any product:

- 1. Contact KineticSystems and discuss the problem with a Technical Service Engineer.
- 2. Obtain a Return Authorization (RA) Number.
- 3. Initiate a purchase order for the estimated repair charge if the product is out of warranty.
- 4. Include a description of the problem and your technical contact person with the product.
- 5. Ship the product prepaid with the RA Number marked on the outside of the package to:

DynamicSignals LLC Repair Service Center 900 North State Street Lockport, IL 60441

Telephone: (815) 838-0005 Facsimile: (815) 838-4424 Email: tech-serv@kscorp.com