KineticSystems Company, LLC
ALL10-2PA1
Windows 2000 Device Driver
V122 FOXI
User’s Manual

(C) 2003
Copyright by
KineticSystems Company, LLC
Lockport, Illinois
All rights reserved

March 13, 2003

KineticSystems Company, LLC

Windows 2000 Device Driver &
API Libraries

2962 PCI Grand Interconnect

KineticSystems
Company, LLC

900 N. State Street, Lockport, Illinois 60441 (815) 838-0005 (815) 838-4424

Windows 2000 Device Driver/API

2962 PCI Grand Interconnect

Document Revision: March, 2003
Software Version: 4.0.0

Operating System: Microsoft Windows 2000

March, 2003

KineticSystems Company, LLC makes no representations that the use of its products in manner described in
this publication will not infringe on existing or future patent rights, nor do the descriptions contained in this
publication imply the granting of license to make, use, or sell equipment or software in accordance with the
description.

Copyright ©1996 by:

KineticSystems Company, LLC
Lockport, Illinois, 60441
All rights reserved

Available Monday through Friday 8:00 a.m. to 5:00 p.m. central standard time

Telephone: (815) 838-0005

Fax: (815) 838-4424

E-mail: tech-support@kscorp.com
Web Home page: http://www.kscorp.com

TABLE OF CONTENTS

L INETOAUCTION 1ottt sttt r e e s s et oo 1
1.1 2962 PCI Grand Interconnect AdAPLEr.........ovivrieiuriuiuereieieeeeeeieeeess e ee e 1
1.2 Windows 2000 DeVICe DIIVETcuiuireriierrineiiniessesssee e seetese e se e 1
1.3 Demand MESSAZESuevuiuisiiiiiiici ittt sese st ettt et ee et et e en s et e e e eees et 2
1.4 Programming SUPPOTT..........oieiuieeeieciniersetseie sttt es s e cs e ee e s s e s ee e e e e 2

2 INSTAIALION .ot s et ee e 3
2.1 DATECTOTY SITUCHUTE oottt eb sttt e e s et eeeeee oo 3

2.1.1 INCIUAE FIIES ...ttt et e 3
2.2 POSE INSTAIIALION ©...uvoeeit ettt e e st 4
2.3 PIOGIAMN GIOUPS ..ottt sttt e et e st e es e es s e eeseseeeeees 4

3 APT LIBTATY .ottt es e s e e s e eee oo 5

3.1 SuppOrt LAMIEAHONS «.vovvoiieieiiies ittt ee s st e e er e 5
311 CAMAC LSt DUILGINE. ...t 6
3.2 CAMAGC ROULINES.otcviiicrcsci ittt sen st e eee e e et s e s s e e 6
321 Performance COnSIAETAtIONScvurverriuermireieireiieeeetieeeeeee e et e eeesen e 6
322 CAMAC Library Call SUMIMALYc.oviviueieeiitceeeeeeeeeeeee oo 6
323 INIHAlIZAtON CAllSocoiiei et e 7
324 Single-Action Data Transfer Callscoeuerrueiiiiieiereeeeeeeeseee e oo 7
3.2.5 Block Transfer Callscocrurirrerieineeieeesees st ee e e oo 8
3.2.6 Highway OPErationsccciirurriineteites st e oo e 8
327 Control and Status Calls...........cccoouiiirerieeeeeeer e e 8
32.8 Error Status ConsideTrationseoiiueeueuririuireieee s e 9
3.2.9 Asynchronous Event Handling (LAMS).......c.oviuiiiureeroieieiinereeeeeeeeeeeee e oo 10
32,10 EITOT COGESvuviiiiiiecciiet st sttt es st es e ettt e e s 10
3211 Tinker REQUITEIMENTS.cciuviiuiieirirrieiiet et 11
3.3 CAMAGC ROULINES. ..ot sttt st s e e 12
331 CADLO .ttt e e e 12
332 CAD24 ..ot r e et 16
333 CACTOS 1ottt ettt e e et 20
334 CACKTL 1ot e 22
335 CAIAIML ottt e et 25
336 CAIMLEG ..ttt et ettt r et e e e e e e 30
3.3.7 CAIMZA ..ottt ettt b s et sttt et s et e s ettt et ee e 33
3.3.8 CAITISE .ttt ettt ettt ettt ettt st bt s ee et et e A e e se et b s et s eaee et e ne e aeeas e e et e e et s e te et es e et eee s 36
339 CAOPETL ot et e b e bt e bt A b e e e et e m e e e s e e e et e er e et e s et s et e e e 38
330100 COSIAL cooteiis ettt e et 40
3301 CXIAIML ittt et e e e 43
3312 camlOOKUPIMISE ..ottt e 48
3.4 CAMAC List Generation ROULINESc.vueerieeiiiiee it eeee oo 50
34.1 CADIK et et 51
342 CACXEC 1ottt et e b ettt et e et e tee s er et et et e e e e re e et e e et e ess e e 55
343 CABKEW oottt e e e sa e be e et e st e e s e s e aee e r e et et e eee e e s e e et et s st e e 59
344 CAIAIE 1. 62
345 CRINATL . oott ettt et e st 65
3.4.6 CRITIIE .o ertieite ettt bbbttt e e e s e e e et eees e 69
3.4.7 CAINALL. o1ttt eh s et e e e n et s oo e 73
3.5 VXI List Generation INterface LiDIATYccoeueiueimmiuerniiseeeeoeeeeeeos e 77
3.5.1 LIBIATY USAZE ...ttt ettt 77
352 KSC_DACASE TIZEET ...ttt ee e e e e e 84
353 KISC U DIOCK TW oottt et e oo 85

354 KSC QUMD ST ittt r e 87
3.5.5 KSC €D ISttt et ee e e 88
356 KISC_AINISH. oottt et 89
3.5.7 KSC _gen demandcccucriiueiieininnceie et 90
3.5.8 KSC NIt THST 1oviriiictiictc ettt ee e e e oo e e 91
359 KSCNINE TW ittt r e et ee e e 92
3510 KSC_INHNE Woeiuiiiiiiiiiiciiciercses et en e st s e 94
3511 KSC _SIaVe_TrIZZET ...oviiriereieriiscevisrnisee et s et e 96
3.6 VXL ROULIIES ..ottt ettt s s e s e e e e eee e 97
3.6.1 APTUSAEE ...ovveeiviiieeitte ittt ettt st ee e e et et ee e et ee e e 97
3.6.2 APT and DIIVET BITOTSucuiiiiiiicccniec ettt 97
3.63 APTHANAIE ..ot et eee s es oo 97
3.64 Command LiSt GENETATIONcvevucueirieiririntieintiete et s s et e e e s es oo 98
3.6.5 Partition COMIENTIONcuiericsciiici ettt eese et s et ee et oo oo 98
3.6.6 Program TEST _APL........oooiiiiie ettt ees e ee e oo eee e esesees e 98
3.6.7 KSC_demand T8 ..ottt e es e ee et 100
3.6.8 KSC_display_partitionsc.ccoerereeurireeiniesiese et se e e ee e et 101
3.69 KSC_enable demand.............c.oiuiiiiiiinciicninieeisiece e e s e 102
3.0.10 KSC_EXEC TIST..ouiiiiriiiiiiiicicen ettt ee e e oo 104
3.6.11 KSC 8XEC_WIIST....voioeeecic ettt n e e 105
3,612 KSC_get fAIlUrE ...c.coiuieiiririces ettt e 106
30013 KSC ML 1ottt ettt s et e 108
3.6.14 KISC _IASTEITON ...eoruviicriiii ittt bttt es e s 109
3.6.15 KSC 10BAZO ..euiiiiiiiiciiiiinc ettt 110
3.6.16 KSC 10ad_CIALStouiiiiriiiirinieteteieicte et 111
3.6.17 KSC_print_SYMDOLIC. ...couviuiuririeiiiniiirii ettt ee e eee e oot 112
3.6.18 KSC r1€ad _CIALISt ...ttt et s et e 113
3.6.19 KSC 1A COUMLETSviivevicicercieicecinees ettt se e e e oeeeseooe. 114
3.6.20 KSC_SEL PATTIHIONS ..cvoveveoiiiceiiceiectcte et es sttt sttt s e e e e e s, 115
3.6.21 KSC SEL_HIMEOULS.ruoieceviieecieeceics et rae ettt ot se et ees s es e s e e s s e ee oo 116
3.6.22 KSC _v160 _10ademd........o.coiiiiicieiiniieieinesie et 117
3.6.23 KSC _V1I60_TadDUFououieiiiricriie ettt e s e s e 118
3.6.24 KSC V160_1€adCmd......cccvvrieerrireeieiiieeisei et e eee s et e e 119
3.6.25 KSC_VIO0 TEAAIEE......ccriimiereeeeecieieieieeete et es e s s e e oo 120
3.0.20 KSC VIO0_IIIZEET ..ovuiiieviiieciceeieee ettt et 121
3.6.27 KSC_VIO0 WIIETEErvoiveieeeieitteese et ciesse sttt eses st ee e et 122

4 CAMAC Command Line UHHHESc.cuevueiimiriieiieinieecee et e s oo 123
4.1 Command SUIMIMATYocoriiuiiireierieeee ettt es e es et et st s s e st e ee e e e 123
4.1.1 CACTRL ULILY 1ottt es s ettt e e s eeeeoe 123
4.1.2 CAM UHLIEY 1ottt s et e e e s s s s ee s 124
4.1.3 COSTAT ULIEY ...ttt e ss ettt r et ee s st e s et 125

5 RESOUTCE MANAGEToovieiiciitni ettt st es ettt e e eee e e s e s e e e 126
5.1 Resource Manager FUNCHONALIEYc..eueurirrueuiireriseieeceeeciesne e se e e 126
5.2 Resource Manager Files...........couiiiiiiiiiieinne ettt m e 126
5.2.1 RIMIPAH ot e e e 127
522 VXL CONTIGUIALIONoiriiiicte et e et 127
523 Highway INTEEIILYcooviiiiiiccece ettt 128
524 GEMETAL .ottt e e 128
52.5 COMMAND-LINE INTERFACEccoottiitieiieiititeeeee et 128
5.2.6 THEORY OF OPERATION.........cooimirietiimiimiireieiet e eeess et e s ee e e 130
5.2.7 FILE FORMATS ...ttt ettt 130
528 Grand Interconnect DevIce TabIecooiviiueiiriueiceeeieeie e s e e e 130
529 Interrupt Configuration Flec.coriveinioiriiee st 131

5.2.10 Manufacturer Name Tablecccocrummiriiuiieeiiesieeeeseeeee e e 131

5211 MOl TaDIE ..ottt 131
52,12 ReSOUICE TADIEoovecioiiiiciree e 132
5.2.13 TrIZEET TADIE ..ottt 133

0 VISA LIDTAIY ..ooovvieittics ittt st s e e e 134
0.1 VISA OVEIVIEW ..ooviiiiiiiicececincit ettt et s st 134
6.1.1 VISA ROULINES OVEIVIEWc.vvutiriniiieisiesetesecee st oot s s 134
6.1.2 VIASSEITTTIZEET ..ottt e e e e 136
0.2 VICIEAT 1.t et e e ee e es oo 138
0.3 VICLOSE ..ottt s s et et r ettt et 139
0.4 VIFIIANEXE ..ottt et s et e 140
6.5 VIFINARSIC ..ottt e s s em s s e 141
0.0 VIGETATTIDULE 1..vvvosce ittt e e eee s e e e et s e oo eeeee e 143
0.7 VIINIG ittt e e et 144
0.8 VIINB ..ot et e 146
0.9 VIMAPAGAIESS ...ttt 148
.10 VIMOVE ...ttt oo r et e e e et eees oo 150
6. 11 VIMOVEINS........ooiiiiic ettt e e e eee oo 152
0.12 VIMOVEINLG......ocooiiiiiicit sttt s e s e 153
0.13 VIMOVEINI 2.ttt et et e e e e eseeeeee e 154
0.14 VIMOVEOULS ..ottt e e s e e s e s e eeeeoee oo 155
0.15 VIMOVEOULLO ..ottt e s et s e e s e e 156
0.16 VIMOVEOULZ ...ttt ettt e e n e e 157
0.17 VIOPEI oottt s ettt e e e e st eee e 158
6.18 vIOPenDEfatItRMcociuiiiicirceieieiie ettt 160
0.1 VIOUL ..ottt e et 161
0.20 VIOULLO ..ottt et et 163
0. 21 VIOULBZ 1ottt 165
0.22 VIPEEKSooiitiitct ettt e et 167
0.23 VIPEEKL0 ..ottt et e et 168
0.24 VIPEEK32 ..ottt ettt 169
.25 VIPOKES ...ttt et et e e ee e e 170
0.26 VIPOKE L6 ...ttt s et e e s eeeeeeeeoe e 171
0.27 VIPOKES2 ...oioiie et et r e 172
0.28 VIPTIIEE ...ttt sttt s et ee oo 173
0.29 VIQUETYT ..ottt bt s e et e e ee oo 176
0.30 VIREAM ..ottt s et et e e 179
0.31 VIREAASTB ...ttt e et e e e e s 181
.32 VISCANE ...ttt e 182
0.33 VISELALITDULEcoo ettt ettt e st et eee oo 185
0.34 VISPIINEoiiiii e e e e e oo 186
6.35 VISSCANE ...ttt e oo 187
0.36 VISTATUSDIESC.....oocveeeieie et ettt e et s et eee e e 188
0.37 VIUNIMAPAAAIESS ...ttt e e e e ee e 189
0.38 VIVPIIIEottt et e e e e s e em e 190
.39 VIVQUETYE ..ottt et e e e e e et 191
0.40 VIVSCANT ...ttt e 192
6.41 VIVSPIIIE ...ttt et e e e s es e e 193
042 VIVSSCANToouiiiriic ettt 194
6.43 viVXiComMMAanAQUETYcveutiriraieierresiseiee e ceeees st eee e ee e e s e s e es e 195
0,44 VIWTITEoovieii etttk et s e e st e e e e e ee e 196
7 KSC List Generation INerface LIDIATY.......cooeueiveveiuiurieisiceerisiesseeteceeeseeese e es e oo 197
7.1 LIBTATY USAZE ...ovovivoeticitic sttt sttt ee s e 197

7.2 KSC_DACASE THIZEET . vvoevveieeeiiiitici ettt eoeeeeeooeooe e 204

7.3 KSC_DIOCK TW oottt et 205
7.4 KSC_QUIMP_LIST. oottt 207
7.5 KSC_NA_LIST..oiiiiiiiiii et 208
7.6 KSC_IIMISI 1ottt 209
7.TKSC_gen demandocouriuiiiniiiiccicienrieense e 210
78 KSC ML TISE 1ovevvoririiseisiseti ettt e oo oo oo 211
7.9 KSC_ININE TW ivoiiiiiiiiiisie ettt e e e oo seeeoee e 212
7O KSC ANHNE Weroiiniiiiiiisni ettt r e s oo oo 214
711 KSC_SIAVE THIZEET ..ovvoiviiiiiritiii sttt eeeeeeeoeeooe e 216
B DCIMANMAS ..ottt sttt oeee oo 217
8.1 The Demand PIOCESScvuiriiiiiceieiinesieseee st esss e s e oeeeeeeeoe 217
8.2 Demand Configuration Filecc...ooiiiiiiriieciisieseeeecees e 217
8.2.1 Application Registration for Demands...........o..e.eveeeevoieeeeeeeeerseeees oo 218
8.2.2 Demand PrOCESSING........c.euiriiiiiiciiceieirceree et es e e e e 218
8.3 User APplICAtion PIOZIATILvuuuiviiaieineieti st cata e cs s es et ee s 219
8.4 Demand Process Dataflowcuuiiiieriirineieniiinsie oo eesse s 220
8.5 Demand UHIHESvvuevveioecieicceaciocieciece st oo oo 221
8.5.1 Program DMDSTS...........oooiiiiiceieee e 221

9 NT KCDRIVER.....cooiitiitiiiiiincsti st ss sttt eeeoeooee 223
9.1 DIIVET INEITACE ...vvo ottt 223
9.2 NT EVICES w-1rvunveeivasiiieiic sttt bt b+ e e e ee e e s e oo eoeee oo 223
9.3 DeviceloCOntrol fUNCHONS...........orvviieacoreerie st ee s eeeoeoe oo 224
9.3.1 ReadFile and WriteFile OPErations.......c.ooveiiveruoreieeieeeeeeeeeee oo 225
9.3.2 BUTTELS et 225
933 KSC_PARTITION- Set the partition tablecoo.ovoovioieeoeeeoeeees oo 226
934 KSC_TIMEOUT- Set the time out for a Partition................ocoreeeeerem oo 226
9.3.5 KSC_TIMERSET- Set the device intermnal tMeTo..ovuvueeeeeeereeeeceeeeoeeoeoooeoooooooeo 226
9.3.6 KSC_2115 RESET- Reset the deVICEceruerurivrirreiieecesieeeeos oo s 226
93.7 KSC_ID- Return the current release of the driVer............coovoveeueveeeeeoooesooooeoeooooooooo 226
9.3.8 KSC_COUNTERS- Return counters for the driVercooovoeeoooeeooeooeooooooooooo 226
939 KSC_RDPARTABLE- Read the current partition tablecoovooveoreoooeoeooooooo 226
9.3.10 KSC_ERRREG[1-8]- Read the last status and error information for a Partitioncceeeeevvnenene.. 227
93.11 KSC DMDREAD- Read any demands currently in the device Adapter.cccovevrriiniie e 227
9.3.12 KSC_BUFCOMPLETE- Read any buffer completion FIAGS e, 227
9.3.13 KSC_ACKBUFCOMPETE- Acknowledge the processing of the buffer completion 227
9.3.14 DMA COnSIAETAHONSouovviiieierietete et e e 227
9.4 StAtUS RETUITIS 11vovvvioviiese ittt es e e oo s e 228
9.5 Demands and LAMS ..o s 228
9.6 MultiBuffer ConSIderationsccvceveeeeerieiierieeseer s seeeeess e eeeee s 228
9.7 NT LIMIIATIONS . cvooto vttt e ettt sttt et es s e s s eeeeeeeeeee oo 229
1O BITOT COES oottt e ee e eoes oo 230
10.1 Driver and KSC APT SUCCESS CORS........ucurrurerrerririuarisrssesneeeseeeeeeeesesss oo oo 230
10.2 Driver and KSC APT EITOI COES.........ccuvurummriimmniireiaiieseosiecetes e ees s oo 230

1T Camac BITOT COES......cvuuirnriiiiniicnicioceieceeanessnsssse s et ee s s eesee e e 233

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

Introduction

1 Introduction

This document describes the application programming libraries for the KineticSystems' 2962 PCI Grand
Interconmect adapter. Although a cursory overview of the 2962 is provided, the user should reference the
2962 hardware manual for more details.

1.1 2962 PCI Grand Interconnect Adapter

The 2962 provides the host application programs the ability to address CAMAC and VXI chassis on the
Grand Interconnect highway. The actual accessing of the modules within the CAMAC and VXI crates is
via command lists. These command lists must first be loaded into the command list memory of the 2962
and then requested to execute. The 2962 supports command lists containing CAMAC commands (CNAF),
VXI commands, and additional command lists unique to the 2962.

All data transfer operations to or from the 2962 requires a data buffer (except for a command list containing
all inline writes). A command list when executed by the 2962 may either supply data or sink data but not
both (e.g., a block write and a block read in the same command list will cause an error). Special command
list instructions are provided that allows the ability to store data within the list itself. These special
instructions can be used for setting up crate registers prior to a read or a write.

The 2962 has the ability to trigger lists by either an internal or external clock. When the 2962 is loaded
with a command list the list will begin execution when the clock period expires. Prior to the clock
expiring, there must be a data buffer available for the transfer or the clock trigger will be lost.

The 2962 supports multi-buffering using the memory within the host processor. Once set up a multi-buffer
Interrupt occurs whenever a fixed number of transfers occur. The number of buffers can be from two to
four. The host processor must have all of the buffer mapped for DMA transfer prior to the execution of the
list. The list must be first loaded into the 2962 command list memory and then triggered (normally by the
internal or external clock).

1.2 Windows 2000 Device Driver

The 2962 device driver for Windows 2000 provides a standard Windows interface to the 2962 Grand
Interconnect adapter.

The command memory of the 2962 is partitioned into eight partitions (numbered 1 to 8). The size of each
of the partition is user selectable via an appropriate API call. The driver defaults the size of the all the
partitions to start at zero and to contain the complete command list memory. This means that in effect all
partitions are using the same command list memory.

The CAMAC and VISA library functions make use of command list partition number one. The simple
single CAMAC commands, such as CAM16 and CAM24 only use about eight memory locations in the
2962. The CAMAC list building routines can generate larger lists that may not fit in partition one. The
standard CAMAC list building routines did not provide the ability to specify a partition that may limit the
minimum size the user may want to select for the first partition.

The 2962 device driver supports the following functions of the 2962:

e Command List processing
e Demand Message processing

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

Introduction

1.3 Demand Messages

The driver will only dequeue the demands from the device when a process posts a read for the demands.
The read will complete when one or more demands are present in the FIFO of the 2962. The user will
recetve from one to the number that can be placed into user’s buffer. If there are demands present when the
user posts the read, as many as possible are immediately returned to the user. The user’s read request will
wait only if there are currently no demands in the demand FIFO of the 2962. The maximum number of
demands that are dequeued is also limited by the driver as they must be unloaded under interrupt lockout.
If the 2962 is reset due to an error, the user will be notified with a status indicating that a reset has
occurred. The user should be aware that demands may have been lost.

A special demand process server is provided with the driver to help users integrate demands into their
application. The Demand Process is required for LAM support in the KineticSystems CAMAC library.
LAMS (CAMAC Look At Me) is a subset of the demand types handled by the 2962 device driver. The
Demand Process also services the Demand Messages from VXI chassis.

1.4 Programming Supp ort

An API (Application Programming Interface) is provided with the 2962 CAMAC Serial device driver. The
user should use these routines to provide more portability and reduce system dependencies.
KineticSystems also provides a list building support for the 2962 specific command lists and for the 3972
CAMAC crate controller. The following describes the provided software layers:

CAMAC Library VISA VXI Library

KCA API Library

NT Device Driver

KCA 2962 PCI Adapter

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

Installation

2 Installation

The device driver is installed using the InstallShield product. The user only needs to determine in what
directory the device driver this product should be placed into. Normally, this software is placed in:
C:\KCAxxx] (xxx= product release and version number). Depending if the kit was acquired via an FTP
site or was distributed on floppies, use the normal NT installation procedure.

2.1 Directory Structure

The following documents the contents of each of the sub-directories.

\DRIVER Contains Driver Image

\API Contains API Shareable image (KSCAPI.LIB)
\CAMAC_UTIL CAMAC utilities

\TEST Simple test programs

\EXAMPLES Example source code

\DEMAND Demand Process and configuration file
\INCLUDE Include files

\DOCUMENTATION Contains this document and release notes

2.1.1 Include Files

The following is a description of the include files provided in the include directory.

C header files

CAMAC.H- Contains CAMAC specific parameters

CAMERR H- Defines all of the CAMAC library error codes

CMDLIST.H- Contains the macros and definitions used for building load and go command lists. The
user must define the symbol: “KSCADP_SH” to select the generation of the correct command list
generation.

KERRORS_MSG.H- Defines all of the KSC API error codes

KSC_APLH - Contains prototypes for the KSC API library

KSC_GENLIST H- Contains prototypes and definitions for the KSC list building routines
KSC_HANDLE.H- Contains the definition of the KSC API handle

KSCIOCTL.H- Defines all of the IOCTL codes for the 2115 NT device driver

KSCUSER.H- Contains all of the CAMAC library prototypes and list building header

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

Installation

2.2 Post Installation

The 2115 is automatically configured by the POST (Power Up and Self Test) of the PCI based processor
upon system bootstrap. This configuration information is then used by the driver to determine IRQ levels
and bus address space requirements. The user has a choice of requesting that the device driver be loaded
upon bootstrap by placing an entry into the Windows NT startup window. The driver may also be
automatically loaded by running REGEDT32.EXE to modify the NT registry. Modify the value of Start
from 3 to 1 under the following registry tree.

HKEY LOCAL MACHINE

A SYSTEM
A CurrentControlSet
A Services
A KSC2115

The driver may be manually started by entering NET START KSC2115 at the command prompt. The
driver may be manually stopped by entering NET STOP KSC2115 at the command prompt.

2.3 Program Groups

The Window Program Group “KSC CAMAC2115” is created in the program manager. The following sub-
groups are also created off the main program group.

o CAMAC UTILITIES
CAMAC_COMMANDS- Runs the CAM utility program
CAMAC CONTROL- Runs the CCTRL utility program
CRATE STATUS- Runs the CCSTS utility program

e DEMAND PROGRAM
Demand Process- Starts the Demand Process
Demand Status- Start the Demand Status process
Edit Configuration File- Calls up note pad to allow user to edit the configuration file
Start Driver and Demand Process- This will load the 2115 device driver and request the
execution of the Demand process
Stop Driver- Unloads the 2115 device driver

e TEST PROGRAMS
LAM3473- Example LAM program that requires a 3473 change of state card
TEST_API- Example test program that tests the KSC API library
TEST_CAMAC- Example test program that tests the CAMAC library calls
TEST_DEMAND- Test program that tests the demand functioning

e README- Calls up note pad to read the read me file.

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3 API Library

This chapter explains the use of the existing CAMAC software library available from KineticSystems for
CAMAC crates. The CAMAC library routines eventually call the KSC API for the 2962. Users who want
to use the extended list building capabilities of the 2962 must use the KSC API list building routines.

3.1 Support Limitations

The existing KSC CAMAC routines were originally developed for RSX11M Plus and Windows NT/VAX
environments using older KSC serial highway and bus technologies. These older CAMAC adapters did not
support the ability of placing the CAMAC command execution list completely within the adapter as the
2962 does.

The execution of the command list within the adapter results in the inability to return certain status
information to the user, No-X, NO-Q, etc. on a per command instance. Every attempt was made to support
the existing CAMAC installed base from VMS. The CAMAC library maintained a header that points to
five different buffers. The CAMAC compatibility library supplied with the 2962 does not use all of these
buffers. The main reason for this change is the design of the 2962 and the changes in the NT device driver.
Because the command list is actually loaded into the 2962 and then executed by the 2962, the device driver
can only report the following information:

Number of bytes actually transferred

The location in the command list after last command executed

The highway status of the last command

Controller CSR

The method of LAM handling is different than previous releases of the software

bl o e

The earlier CAMAC serial highway drivers executed a single CAMAC instruction and the result of each
nstruction was available to the caller. The CAMAC compatibility library uses the three items above to
populate the status array, however, the QXE buffer and the Word Count buffer are not supported. The
compatibility library maps the 2962 NT error codes to the existing error codes in the CAMAC library.

The CAMAC library required a channel number passed for each call to the CAMAC library routines. This
variable was a 16-bit word value. This value has been replaced by a bit long word value. This variable no
longer contains the channel number but is a pointer to an allocated structure.

All buffers used by the CAMAC library must be long word (32-bits) aligned. Additionally, all buffers that
are used for write functions must contain additional four 32-bit longwords at the end. These requirements
are a result of the DMA pipelining of the 2962.

Users who wish to use the clocked lists or the multibuffer support of the 2962 must use the KSC API as
there is no equivalent function in the existing CAMAC library.

The routine CXLMST is no longer supported. The ASTs that were triggered by the LAMs are passed with
different arguments.

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.1.1 CAMAC list building

The CAMAC library provided software to build CAMAC lists. This structure has been changed by adding
anew longword. If existing users have followed the CAMAC library standards, the size of the header array
will be increased with a new compile. This new addition allows for the ability to use either the existing
CAMAC list building along with the 2962 specific list building routines found in the KSC API library.

3.2 CAMAC Routines

The High Level Language CAMAC Library Routines supplied in the CAMAC library can be used in
conjunction with C, and other high level languages. These routines may also be used with any language
that follows the calling standard. The documentation explains each call in a language independent manner.

The routines in this chapter are simple to understand and use. In general, the specified CAMAC /O
operation will be executed before control is returned to the user process, and each call corresponds to a
basic CAMAC I/O operation (either adding to the command list being built or actually performing the
operation).

Note: Before attempting to issue any CAMAC commands to a Serial Crate the user must insure the crate is
on-line. This can be accomplished by a call to CACTRL specifying the ‘ONLINE’ function.

3.2.1 Performance Considerations

Frequently CAMAC applications may involve time critical program segments. By default Windows is a
time sharing system and as a result can lead to very disappointing performance in some time critical
situations. The user may need to lock down all data buffers to improve performance. The loading of the
2962 with the command list can also be done once and left within the 2962 for later execution. The
software driver provides the ability to partition the command list memory info eight different partitions.
All CAMAC routines use the first partition. More control of the 2962 requires the user use the KSC API
calls.

The 2962 also supports multi-buffer memory and triggers that can improve performance of lists that are
executed more than once. This is achieved by locking the buffer into memory (the I/O request never
completes) and loading the command list only once and providing the I/O completion notification via
another I/O device.

3.2.2 CAMAC Library Call Summary

The standard CAMAC library routines provide you with a simple direct set of calls to perform I/O
operations to CAMAC. The calls are divided into six groups:

Initialization calls
CAOPEN (chan,device,StatusArray)
CACLOS (chan,StatusArray)

Single-Action Data Transfer Calls
CAMI6 (chan,C,N,AF,data,StatusArray)
CAM24 (chan,C,)N,AF,data,StatusArray)

Block Transfer Calls

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

CABI16 (chan,C,NAF ;mode,DataArray, TransCount,StatusArray)
CAB24 (chan,C,NA,F,mode,DataArray, TransCount,StatusArray)

Enhanced Serial Highway Block Transfer Calls
CABIGE (chan,C,N,A,F,mode,DataAnay,TransCount,StatusArray)
CAB24E (chan,C,NA,Fmode,DataAlTay,TransCount,StatusAlTay)

Status and Control Calls

CACTRL (chan,C,func,StatusArray)
CCSTAT (chan,C,CrateStat,Status Array)
CAMSG (StatusArray)

LAM or Asynchronous Calls
CXLAM (chan,C,LAMid, Type,Prio,ASTadr,StatusArray)
CALAM (handle,C,lam_id,lam_type,priority,ast_addr,user _parm,CIrN,CIrA,CIrF,DsbN,DsbA, DsbF, error)

The CAMAC library routines are called as a longword function subroutine:
int IERROR;
IERROR = camroutine(arguments...);

where camroutine is one of the CAMAC routines defined in this manual. In the case of the Function
subroutine, the function returns the error status. The error status follows NT conventions and is always odd
if the operation was successful. The Function subroutine simplifies the checking of the success or failure
of a CAMAC I/O operation, since the call and the test are made in the same line as follows:

if((camroutine(args ...) .and. 1) .eq. 1) THEN "success" ELSE "fail"

Examples in this manual use the CALL form, but the Function form can also be used as appropriate.

3.2.3 Initialization Calls

The initialization calls provide a mechanism to open the CAMAC device for I/O by a program. Subroutine
CAOPEN should be called once for each CAMAC interface (2962) to be accessed by the program and
should not be called again until the channel has been closed. The pointer points to a KSC API handle that
is allocated when the 2962 is opened.

3.2.4 Single-Action Data Transfer Calls

The single-action data transfer calls are simple to use. Each call results in a single CAMAC operation and
the appropriate data transfer. Two versions of the single-action routines are provided, CAM16 for 16-bit
transfers and CAM24 for full 24-bit transfers. These routines are appropriate for applications where single
I/0 operations are required or for short blocks of data where the overhead of program-transfer operations
can be tolerated. For large blocks of data, the CAMAC block transfer routines are recommended; they take
full advantage of the hardware DMA features and only incur the setup overhead once for the entire
operation.

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.2.5 Block Transfer Calls

The CAMAC block transfer calls move blocks of data to or from modules in a single operation using the
DMA features of the 2962. Use these routines for reading or writing blocks of data between Alpha
memory and transient digitizers, FIFO modules, display modules, etc.; for repeated operations to a single
module; and for reading or writing a group of modules in a CAMAC crate. Even for a modest-size data
block, these routines have less overhead than the equivalent number of single-action calls because they
transfer the data block at a DMA rate and incur the software setup overhead only once for the entire
operation.

3.2.6 Highway Operations

The CAMAC calls move blocks of data to or from CAMAC modules in a single operation using the
Enhanced Block Transfer features of the CAMAC Serial Highway. Since the 2962 does not have a
CAMAC Serial Highway, the Enhanced Block Transfer are emulated using normal CAMAC block
transfers.

The Enhanced Serial Highway modes are summarized in Table below.

QSTP Performs a Q-Stop CAMAC block transfer operation. This mode continues to transfer the
(mode=0) block of data until the Transfer Count is exhausted or a NO-Q is received.

QIGN Performs a Q-Ignore CAMAC block transfer operation. This mode transfers the block of

(mode=8) data until the Transfer Count is exhausted. The Q response is ignored.
Performs a Q-Repeat CAMAC block transfer operation. This mode transfers fhe block of
QRPT data until the Transfer Count is exhausted or a (hardware or Software) time-out occurs.

(mode=16) | Whenever a Q=0 response is received during the block, the Dataway operation is repeated
and the data array address pointer is not incremented.

Performs a Q-Scan CAMAC block transfer operation. This mode transfers a block of data

QSCN until the Transfer Count is exhausted or N>23. A represents the starting subaddress and N
(mode=24) | represents the initial station number for the scan operation. Note that the ending values of
A and N are not returned.

3.2.7 Control and Status Calls

With the control and status calls, you can Initialize or Clear a crate, change the state of crate Inhibit, read
crate status, and read the status of the last CAMAC operation.

All of the library calls return a status array. This array contains information on the last call to the CAMAC
routines. At the simplest level, it indicates whether the I/O request was successfully performed. If
StatusArray(ERR) is odd, it indicates a successful completion of the I/O operation (no errors). Additional
information on the success or failure of the I/O request in the status array is indicated the following table.
The error codes follow the NT standard for error codes as well. The odd codes were selected as successful
status as well such that users migrating from Windows NT would not need to modify their software if they
tested for odd status. Note that the Subroutine CAMSG can be used to decode the returned error number
into ASCII text. Even though the simple CAMAC routines build the lists for the user, the last four items
are returned for all CAMAC routines. The symbolic name for the status array element is shown along with
its decimal 1-based array index. Remember, arrays in C are 0O-based, therefore you must subtract 1 from the
given index to obtain the C array index.

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

APT Library
STATUS ARRAY
0 Error Status: Contains the returned error code. An odd return status indicates a successful transfer.
ERR Any other value indicates an error or warning.
1 Control and Status Register: Contains the state of the 2962 Control and Status register. This is
copied from the I/O status block. See the I/O status block for the 2962 device driver and the 2962
StaCSR e
hardware manual for a more complete description.
9 Error Status Register: Contains the state of the 2962 Error Status Register. This is copied from
StaERS the I/O status block. See the /O status block for the 2962 device driver and the 2962 hardware
manual for a more complete description.
S tai Cs List Status Register: Field is zero and is reserved for future KSC use.
A variable using bit 1 to indicate the sum of CAMAC NO-X responses and bit 0 to indicate the sum
4 of CAMAC NO-Q responses for all the CAMAC operations in the Command List. If there were any
StaSum CAMAC NO-Qs, bit zero of StaSum would be set and if there were any CAMAC NO-Xs, bit one of
StaSum would be set.
5 A variable returning the number of words not transferred for the last Block Transfer operation. A
zero will be returned if the last Block Transfer operation was successful or if there were no Block
StaCnt . .
Transfers in the Command List.
6 A variable returning the Fortran index into the CCL of the last command m the Command List that
Stalis was executed by the driver.
7 A variable returning the Fortran index into the Data Buffer of the last Data word read or written by
StaDat the driver.
8 A variable returning the total number of Word Count Buffer errors that occurred. This number can
be greater than the number of Word Count Buffer records. Total number of word count errors (not
StaWC
supported on 2962).
9 A variable returning the total number of QXE Buffer errors that occurred. This number can be
greater than the number of QXE Buffer records. Total number of QXE buffer errors (not supported
StaQXE on 2962).

3.2.8 Error Status Considerations

There are many places where status information is provided. For compatibility reasons, status information
is translated to other existing error codes. However, sometimes this manipulation of the status occludes the
real reason of the fault. NT, the 2962 driver, the API library, or the CAMAC library may all return error
status.

The 2962 device driver returns its status via the I/O status block to the API level into the structure pointed
to by the both the CAMAC library (CAOPEN) and the API library (KSC_INIT). Typically the NT status is
returned in the same structure as well. The CAMAC library will attempt to translate this error code to one
of the existing CAMAC error codes.

In summary, to acquire the most detailed status information, the user should call the
KSC_PRINT_SYMBOLIC passing the address returned from CAOPEN or KSC INIT. The CAMAC
library can be called as function values. While trying to support both the existing CAMAC error codes and
still trying to provide as much information as possible, the function value returned and the first word of the
status array may be different in the event there is an error status to be returned. A test of odd on either error
codes indicates success.

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

The error status array has been made consistent for all CAMAC library calls. This array is a nine long
word array. Some of the entries are not populated for some of the CAMAC calls where a list is not used.

3.2.9 Asynchronous Event Handling (LAMS)

In many real-time applications it is necessary to handle asynchronous events such as events which occur
outside the computer and sometimes outside of the CAMAC front-end. For example, an application may
require notification when a discrete input from some device changes state, when some amount of data has
been stored in a FIFO memory in a module, or when a transient recorder has completed recording a wave
form. The LAM or Look-At-Me is the CAMAC mechanism for signaling of asynchronous events. The
CAMAC LAM is delivered to the host computer system as a hardware interrupt.

In the computer, the application software must receive notification of the asynchronous event. The
operating system mechanism for asynchronous event notification is the Asynchronous Procedure Call
(APC). The CXLAM routine is provided to notify the CAMAC driver of the module and crate that will be
generating LAMs and the operating system of the address of the routine to be dispatched when the event
occurs.

The CXLAM routine with LAM- Types 2 and 3 are new with this release of the driver and is the preferred
LAM handling mechanism. The CALAM routine with LAM_Types 0 and 1 continue to be supported for
compatibility with previous releases. LAM_Types 2 and 3 are more powered and can handle most modules
whose design conform to the IEEE 538 CAMAC Standard. LAM-Types 0 and 1 can only handle LAMs
from modules that provide a single control command to clear LAM and disable LAM. Refer to Appendix
E on Driver LAM Handling.

In developing software employing LAMs some special care needs to be observed:

1. LAMs typically signal asynchronous real-time events that in tumn trigger execution of time critical
application software.

2. The CAMAC library is written in the C language and is re-entrant so calls to the library may be made
from both the APC routine and the main program.

3. The operating system can only handle a limited number of outstanding (undelivered) APCs at any
given time. The delivery of the LAMs to the user process is done with the use of the DEMAND
process and NT pipes. All LAMs that are expected to be processed must be configured by the Demand
process. The Demand Process is responsible for enabling LAM recognition for any CAMAC crates
that are to process LAMs. The actual enabling of a particular CAMAC device in a crate is the
responsibility of the user.

4. For recurring LAMs, the demand process will queue LAM messages to the user process as long as the
pipe is not full.

3.2.10 Error Codes

Error codes are documented in the appendix. Those errors denoted as “KSC_xxxxx” where xxxxx is a
symbolic string are from the KSC API library or the NT device driver. The error codes of the form:
“ERRnnn” where nnn is an integer are from the CAMAC library. Errors may also be returned by the NT
itself. The function return value and the ERR entry of the status array should both be examined when the
value of the function is even. Either may be used for success status (an odd status is successful).

10

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.2.11 Linker Requirements

All of the CAMAC and KSC API library routines are provided in the library: KGIAPI.LIB object library.
Any applications that use the CAMAC or KSC API library routines will need to link to this library.

Include files necessary for application building are detailed in the Installation chapter of this document.

11

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.3 CAMAC Routines

3.3.1 cab16

Syntax

int cab16(void **hdlptr,
shortint *c,
shortint *n,
shortint *a,
short int *f,
shortint *mode,
short int *data,
long int *dataln,
int errarr[]);

Purpose
The cabl6 function is used to execute a 16-bit block transfer write or read operation.

Description

The cab!6 function performs block transfer operations to or from a CAMAC module(s) utilizing 16-bit
data words. For the 16-bit data transfers, only the lower 16-bits of the 24 bit CAMAC data word is used
during the transfer. The array used to move data to or from the module must be longword aligned. Since
the PCI bus is organized as 32-bit data words, the array for data must be aligned on a longword boundary
for facilitating Direct Memory Access (DMA). If an odd number of 16-bit data words is to be transferred,
the application software must allocate an additional 16-bit data entry in host memory to accommodate the
re-alignment of data onto a longword boundary. When the 2962 executes a CAMAC block transfer
operation with a transfer count specification that is odd, an additional 16-bit data word is sent to memory to
force the longword alignment.

The cabl16 function supports all four types of block transfer operations. These four modes consist of Q-
Ignore, Q-Stop, Q-Repeat and Q-Scan. Please refer to the Transfer Mode section of this manual for details
on each operating mode.

Parameters

Input Handle returned by caopen function
c Input Address of the chassis to be accessed
n Input Slot number of the module to be accessed
a Input Subaddress within the module to be accessed
f Input Function code to be performed

Type of CAMAC block transfer to perform. Please refer to
mode Input Transfer Mode section of this manual for additional
information.

12

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library
Parameter Name Direction Description
data Input/Output CAMAC Write (Input) or Read (Output) data
dataln Input Requested number of CAMAC data 16-bit data words

errarr

Returned 10-element status array. Please refer to Status Array

utput
Outp section of this manual for additional information.

The mode parameter in the cab/6 function is used to specify the CAMAC block transfer Q-mode and a
specification as to the termination technique when a No-X condition occurs. The following table shows the
available selections as #defines in the kscuser.h include file. Note that only one defined Q-mode can be
specified for each block transfer.

#define Description
QSTP Selects the Q-Stop Block Transfer Mode
QIGN Selects the Q-Ignore Block Transfer Mode
QRPT Selects the Q-Repeat Block Transfer Mode
QSCN Selects the Q-Scan Block Transfer Mode

Q-mode Block Transfer Selection

Return Values

ERRI41

ERR701

ERR703

ERR704

ERR706

ERR709

ERR714

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.

Data buffer not long word aligned.

An invalid CAMAC sub-address (A) was found. The CAMAC subaddress was either
less than O or greater than 15,

An invalid CAMAC block transfer type was found. The legal block transfer types are
QSTP, QIGN, QRPT, and QSCN with corresponding values of 0, 8, 16, and 24,
respectively.

An invalid CAMAC function code (F) was found. The CAMAC Function code was
either less than 0 or greater than 31.

An invalid CAMAC slot number (N) was found. The slot number was either less than 1
or greater than 30.

A CAMAC block transfer control operation was specified which is invalid. Only
CAMAC Read or Write block transfers are allowed. The function code (F) for the
block transfer was either between 8 and 15 inclusive or between 24 and 31 inclusive (8
SF<15o0r24 <F<31).

Illegal CAMAC crate number.

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

main()
{

t
int status;
char devname[] = "kpa00";
int *hdl;
int errstatf STAMAX];
short n;
short a;
short £}
short c;
short qmode;
short ShortWriteBuffer[8192];
unsigned long TransferCount;

/
// Open the device
/
status = caopen(&hdl, devname, errstat);
!
// Check if device opened properly
/!

if ((status & 1) == 0)

// return status from the functions

// Handle for operations
// array with list of errors
/l slot

/! sub address

/! function

// crate

/I q mode for transfer

/1 short write data buffer
// transfer count for block

printf("CAOPEN, error opening device = %s\n", devname);

camsg(errstat);
exit(status);

}
i
// Setup the parameters for the block transfer
/I

c=1;

n=l1;

f=16;

a=0;

gmode = QSTP ;

TransferCount = 100;

status = cab16(&hdl, &c, &n, &a, &f, &qmode, ShortWriteBuffer,

&TransferCount,errstat);
if (status & 1) 1= 1)
f

[§

printf("**#FFERROR**** cabl6\n");

camsg(errstat);
exit(status);
1
J
/!
// Close the device
1

API Library

14

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

status = caclos (&hdl, errstat);

if ((status & 1) I=1)

{
printf("****ERROR**** caclos\n");
camsg(errstat);
exit(status);

(-
(S

API Library

15

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.3.2 cab24

Syntax
int cab24(void **hdlptr,
short int *c,
short int *n,
short int *a,
short int *f,
short int *mode,
short int *data,
int *dataln,
int errarr{]);

Purpose
The cab24 function is used to execute a 24-bit block transfer write or read operation.

Description

The cab24 function performs block transfer operations to or from a CAMAC module(s) utilizing 16-bit
data words. For these 24-bit data transfers, the entire 24-bits of the 24-bit CAMAC data word are used
during the transfer. The array used to move data to or from the module must be longword aligned. Since
the PCI bus is organized as 32-bit data words, the array for data must be aligned on a longword boundary
for facilitating Direct Memory Access (DMA). Due to the architecture of the 2962, each 24-bit CAMAC
data word is contained in a single 32-bit PCI memory word. The additional 8-bits of the PCI memory data
word are ignored. When CAMAC read operations are performed, the upper 8 bits of the 32-bit PCI
memory word are padded with zeros.

The cab24 function supports all four types of block transfer operations. These four modes consist of Q-
Ignore, Q-Stop, Q-Repeat and Q-Scan. Please refer to the Transfer Mode section of this manual for details
on each operating mode.

Parameters

hdlptr Input d by caopen function

c Input Address of the chassis to be accessed

n Input Slot number of the module to be accessed

a Input Subaddress within the module to be accessed

f Input Function code to be performed

Type of CAMAC block transfer to perform. Please refer to
mode Input Transfer Mode section of this manual for additional
information.
data Input/Output CAMAC Write (Input) or Read (Output) data
dataln Input Requested number of CAMAC data 16-bit data words
errarr Output Returned I.O-elemept status array. Please refer to Status Array
section of this manual for additional information.

16

Windows 2000 Device D

river/API

2962 PCI Grand Interconnect

API Library

The mode parameter in the cab24 function is used to specify the CAMAC block transfer Q-mode and the
termination technique when a No-X condition occurs. The following table shows the available selections

as #defines in the kscuser,
block transfer.

h include file. Note that only one defined Q-mode can be specified for each

#define Description
QSTP Selects the Q-Stop Block Transfer Mode
QIGN Selects the Q-Ignore Block Transfer Mode
QRPT Selects the Q-Repeat Block Transfer Mode
QSCN Selects the Q-Scan Block Transfer Mode

Q-mode Block Transfer Selection

Return Values

ERRI41

ERR701

ERR703

ERR704

ERR706

ERR709

ERR714

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.

Data buffer not long word aligned.

An invalid CAMAC sub-address (A) was found. The CAMAC subaddress was either
less than O or greater than 15.

An invalid CAMAC block transfer type was found. The legal block transfer types are
QSTP, QIGN, QRPT, and QSCN with corresponding values of 0, 8, 16, and 24,
respectively.

An invalid CAMAC function code (F) was found. The CAMAC Function code was
either less than 0 or greater than 31.

An invalid CAMAC slot number (N) was found. The slot number was either less than 1
or greater than 30.

A CAMAC block transfer control operation was specified which is invalid. Only
CAMAC Read or Write block transfers are allowed. The function code (F) for the
block transfer was either between 8 and 15 inclusive or between 24 and 31 inclusive (8
<F<150r24 <F<31),

[llegal CAMAC crate number,

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"

17

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

#include "cmdlist.h"

main()
{
int status; // return status from the functions
char devname[] = "kpa00";
int *hdl; // Handle for operations
int errstat{STAMAX]; /1 array with list of errors
short n; /I slot
short a; /! sub address
short f; // function
short ¢; /I crate
short qmode; /I q mode for transfer
int LongWriteBuffer[8192]; // long write data buffer
unsigned long TransferCount; // transfer count for block
/
// Open the device
/I
status = caopen(&hdl, devname, errstat);
/
// Check if device opened properly
//

if ((status & 1) == 0)

printf("CAOPEN, error opening device = %s\n", devname);
camsg(errstat);
exit(status);

h

1
/I Setup the parameters for the block transfer
/

c=1;

n=1;

f=16;

a=0;

gmode = QSTP;

TransferCount = 100;

status = cab24(&hdl, &c, &n, &a, &f, &qmode, LongWriteBuffer,
&TransferCount,errstat);

if (status & 1) 1= 1)

{

L

printf("****ERROR**** cab24\n");

camsg(errstat);
exit(status);
}
/"
// Close the device
I

status = caclos (&hdl, errstat);
if ((status & 1) I=1)

API Library

18

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

printf("****ERROR**** caclos\n");
camsg(errstat);
exit(status);

"
g

19

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.3.3 caclos
Syntax
int caclos(void **hdlptr,
int *error
Purpose

The caclos function is used to close the current CAMAC session with the 2962.

Description

The caclos function is used to unassign a channel from the CAMAC 2962 device and deallocate the per-
process space for the controller. This routine is the opposite of the caopen routine that opens a device for
communication. Once the caclos is executed, the device session is closed.

Parameters

Inpuf Handle returned by caopen function
error Error Code

Return Values
The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.

ERR603 The caclos error is unknown.

Example

#include <stdio.h>

#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

main()

{

int status; // return status from the functions
char devname[] = "kpa00";

20

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

int *hdl; // Handle for operations
int errstat{ STAMAX]; /I array with list of errors
int Iwdata; // long write data
short n; /I slot
short a; /! sub address
short f; /! function
short c; /! crate
/!
// Open the device
i
status = caopen(&hdl, devname, errstat);
/"
// Check if device opened properly
/"

if ((status & 1) ==0)
{
printf("CAOPEN, error opening device = %s\n", devname);
camsg(errstat);
exit(status);
i
/!
/1 Setup the parameters for the single transfer
/"
c=1;
n=1;
=16;
a=0,
Iwdata = 0x112233;
status = cam24(&hdl, &c, &n, &a, &£, &lwdata, errstat);
if (status & 1) 1= 1)
f
i
printf("****ERROR**** cam24\n");

camsg(errstat);
exit(status);
}
/!
// Close the device
/]

status = caclos (&hdl, errstat);
if ((status & 1) I=1)

printf("****ERROR**** caclos\n");
camsg(errstat);
exit(status);

()
g

API Library

21

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.3.4 cactrl

Syntax
int cactrl(void **hdlptr,
short int *c,
short int *func
int errarr[]);
Purpose

The cactrl function is used to execute varions CAMAC Crate Controller functions.

Description

The cactrl function generates CAMAC crate-wide operations. These operations include the CAMAC
Initialize (Z) cycle, the CAMAC Clear (C) cycle, and setting/clearing the CAMAC Inhibit (D) signal. These
operations are addressed to the specified CAMAC Crate Controller by the 2962 with the station number set
to 30 (N=30). All CAMAC Crate Controllers have an internal register accessible at N=30 for generating
crate-wide operations.

Parameters

Inpﬁt Handle returned by caopen function
c Input Address of the chassis to be accessed
func Input Requested crate-wide operation. (see Note 1)

Returned 10-element status array. Please refer to Status Array

t
errarr Outpu section of this manual for additional information.

Note 1: There are 4 valid values that can be used with this command. These #defines are found in the
kscuser. h include file and are listed below.

#Hdefine Description

INIT Execute a CAMAC Initialize (Z) cycle
CLEAR Execute a CAMAC Clear(C) cycle
SETINH Set the CAMAC Inhibit () signal
CLRINH Clear the CAMAC Inhibit (I) signal

Return Values

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.
ERR224 [llegal CAMAC crate number.

22

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

Example

#include <stdio.h>

#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

mainy()

{
int status; // return status from the functions
char devname[] = "kpa00";
int *hdl, // Handle for operations
int errstat{ STAMAX]; // array with list of errors
short ctrival; // cactrl value
short ¢; /! crate

/"

// Open the device

//
status = caopen(&hdl, devname, errstat);

/!

// Check if device opened properly

I

if ((status & 1) == 0)
1

d
printf("CAOPEN, error opening device = %s\n", devname);

camsg(errstat);
exit(status);
}
1
// Setup the parameters for the control call
"
c=1;

ctrival=INIT;
status = cactrl (&hdl, &c, &ctrlval, errstat);
if (status & 1) I=1)

{
printf("****ERROR**** cactrl\n"};
camsg(errstat);
exit(status);
}
//
// Close the device
/"

status = caclos (&hdl, errstat);
if ((status & 1) 1=1)

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

——

printf("****ERROR**** caclos\n");
camsg(errstat);
exit(status);

—_—

24

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.3.5 calam

Syntax
int calam(

void **hdlptr,
short int *c,
short int *lam_id,
short int *lam_type,
short int *priority,
void (*apc_addr)(),
void *parm,
short *cIrN,
short *cIrA,
short *cIrF,
short *dsbN,
short *dsbA,
short *dsbF,
int *error);

Purpose
The calam function is used to register a LAM for subsequent asynchronous notification of an application
program.

Description

The calam function requests the Demand Process to service LAMs for the LAM specified in the call to the
function. The process of enabling a LAM to be serviced by the Demand Process is called booking a LAM.
When the LAM pipe message is received, an Asynchronous Procedure Call (APC) is made to the Demand
Process which disables the LAM and calls the user specified APC routine. Prior to executing the user APC
routine, the Demand Process APC executes the CAMAC commands passed into the calam routine at the
time is was booked. The Demand Process APC will execute either the Clear or Disable CAMAC command
passed into the routine based on the setting of the lam_type. By setting the lam_type to a 0 (Type 0), the
Demand Process will unbook the LAM and issue the disable CAMAC command to the specified module.
When the lam_type is set to a 1 (Type 1), the Demand Process will leave the LAM booked and issue the
clear CAMAC command to the specified module.

In general, it is up to the user application program to actually enable a module to generate a LAM. The
LAM Mask Registers in the crate controller and other associated enables for the LAM are taken care of by
the calam functions. The command to enable the LAM generation within a module should be placed in the
application program after the calam function is used. The Demand Process will enable LAMs for a crate if
they are not already enabled from a previous request to enable another LAM in the same crate.

[f the LAM for a module in not enabled by the user application, a LAM that it generates will never be
serviced. If the user application enables the modules LAM prior to calling the calam routine, the LAM

25

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

could be generated by the module prior to it being booked. This situation MUST be avoided as the results
of this sequence may be erroneous.

Once the Demand Process has completed processing its portion of the LAM service, it passes control onto
the user specified APC. The user’s APC is called with 4 arguments that define specific information
regarding the source of the LAM. This information contains the Station Number (N) of the device
generating the LAM, the handle returned from the caopen routine of the parent program that called the
calam, the chassis that generated the LAM, and the user specified parameter passed into the calam routine
when it was booked. Please refer to the Demands section of this manual for additional information
regarding the APC calling conventions.

Parameters
Parameter Name Direction Description
hdlptr Input Handle returned by caopen function
c Input Address of the chassis to be accessed
lam id Input Specifies the Station Number (N) of the LAM to be booked
Specifies the type of LAM booking. Type 0 indicates an
fam_type Input unbook and disable and a Type 1 indicates a remain booked

and clear LAM

Not Supported. This parameter is for legacy parameter
placeholding,

This parameter specifies the address of the APC to be called
once the LAM is generated.

parm Input This value is passed onto the APC once the LAM is serviced.
Specifies the Station Number (N) to be accessed when a Type

priority Input

apc_addr Input

efrN Input 1 LAM is serviced

cIrA Input ISJpAeI\C/;f;IsesS ;l;:i S:dbaddress (A) to be accessed when a Type 1
cItF Input E}fﬁfzsz ;?zf:yction (F) to be performed when a Type 1
dsbN Input (S)}fjiﬂeisst?;jit?;on Number (N) to be accessed when a Type
dsbA Input i}:ﬁf;lsess ;lrl\e:j CSeuc:)address (A) to be accessed when a Type 0
dsbF Input ISE\el\C/IIfEZ éll?sié?:;ction (F) to be performed when a Type 0
error Error code

Return Values
The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.
ERR714 [llegal CAMAC crate number.

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

26

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"”
#include "cmdlist.h"

/!

API Library

// Global variable definitions....shared between main and APC routine

/!
int *hdi;
HANDLE hEvent;

void ApcRoutine (int *dmd_id,
struct KSC_handle *handle,
int chassis,
void *UserArg);

main()

mt status;
int iStatus;
int Ipcnt=0;
int UserParm;

char devname[] = "kpa00";
int errstat{ STAMAX];

short n;

short a;

short f;

short c;

shortn clr,n_dis;
shorta clr,a_dis;
short f clr.f dis;
short ¢ 3291 =1;
shortn 3291 =1,
short swdata;

short srdata;

short nLamType;
short nLamPriority;
short fix;

fix=n 3291-1;

1
// Open the device
/!

status = caopen(&hdl, devname, errstat);
if ((status & 1) == 0)

I

v

printf("CAOPEN, error opening device = %s\n", devname);

camsg(errstat);
exit(status);

1

}

// Handle for operations

//'So APC can wake up mainline

// return status from the functions

/I array with list of errors

/! subaddress
/! function

/[crate address for 3291
// slot number for 3291
// short write data

// short read data

27

Windows 2000 Device Driver/APL
2962 PCI Grand Interconnect

API Library

/"
// Crate event flag & check status
1
hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

if (NULL == hEvent)

{

iStatus = GetLastError();
printf("Error creating event object: 0x%x\n", iStatus);

exit(iStatus);
}
/"
/I Set up the APC for the LAM (Book the LAM)
/
n_clr=n_3291;
f chr=10;
a clr=0;
n_dis=n 3291; /1 filled in but not used for type 1
f dis =24;
a_dis=0;
nLamType = 1; // clear but remain booked
nLamPriority = -1; // not used
iStatus = calam(&hd], // handle from caopen
&c 3291, /I crate with our 3291
&n 3291, // slot containing 3291
&nlLamType, // forever let us process it
&nLamPriority, // not used, but must be here
&ApcRoutine, // APC to call
&UserParm, // user parameter
&n_clr, // station number for clear
&a_clr, / subaddress for clear
&f clr, // function for clear
&n_dis, // station number for disable
&a dis, // subaddress for disable
&f dis, // function code for disable
errstat); / CAMAC status
if ((iStatus & 1) ==0)
{
printf("Failure to book the 3291 LAM\n");
camsg(errstat);
exit(iStatus);
1
g
while (TRUE)
{

[§
iStatus = ResetEvent(hEvent);

if (iStatus == FALSE)

(
iStatus = GetLastError();
printf("Error Resetting Event: 0x%x\n", iStatus);
exit(iStatus);

28

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library
}
/!
// Generate a LAM on the 3291
/
c=1;
n=n 3291;
f=14;
a=0;
1Status = cam16(&hdl, // handle from caopen
&ec, // crate for 3291
&n, /1 slot number for 3291
&a, // subaddress
&f, /I function code
&srdata, // data space
errstat); // error array
/ |
// Waiting for a LAM
/"

printf("Waiting for a LAM\n");
1Status = WaitForSingleObject(hEvent, INFINITE);

if (WAIT_OBJECT 0 !=iStatus)
I

§
printf("Error in WaitForSingleObject: 0x%x\n", iStatus);
cwait();

exit(iStatus);
\

s
printf("Object Received \n");

3
i)

} // end of main
// APC procedure.
/
/I 'This routine is called when a LAM is received from the demand process
// as a result of the 3291 getting a LAM.
I
void ApcRoutine(int *dmd_id,
struct KSC_handle *handle,
int chassis,
void *user_arg)

{
I
// Set the event so mainline will continue
/"
printf("APC triggered\n");
SetEvent(hEvent);

st

29

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

3.3.6

cam16

API Library

Syntax

int cam16(

void **hdlptr,
short int *¢,
short int *n,
short int *a,
short int *f,
short int *data,
int errarr|]);

Purpose

The cam16 function is used to execute a 16-bit single transfer write, read or control operation.

Description

The cam6 function performs a single transfer operation to the CAMAC crate. This command
accommodates write, read and control operations. All data words moved using this command are 16-bits in
width. Therefore, only the lower 16-bits of the 24-bit CAMAC data word can be accessed using this

function.
Parameters
Parameter Name Direction Description
hdlptr Input Handle returned by caopen function
c Input Address of the chassis to be accessed
n Input Slot number of the module to be accessed
a Input Subaddress within the module to be accessed
f Input Function code to be performed
This parameter either specifies CAMAC write data for write
data Input/Output operations to the CAMAC crate or read data returned from
executing a CAMAC read operation.
. Returned 10-element status array. Please refer to Status Array
errarr Output
section of this manual for additional information.

Return Values

ERR701

ERR704

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.

An invalid CAMAC subaddress (A) was found. The CAMAC subaddress was either
less than O or greater than 15.

An invalid CAMAC function code (F) was found. The CAMAC Function code was
either less than 0 or greater than 31.

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

An invalid CAMAC slot number (N) was found. The slot number was either less than 1
ERR706 or greater than 30.

ERR714 Illegal CAMAC crate number.

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

main()
{
int status; // return status from the functions
char devname[] = "kpa00";
int *hdl; // Handle for operations
int errstat[STAMAX]; // array with list of errors
short n; // slot
short a; /l" sub address
short f; /l function
short ¢; /I crate
short swdata; // short write data
/!
// Open the device
/!
status = caopen(&hdl, devname, errstat);
/!
// Check if device opened properly
/!

if ((status & 1) ==0)

printf("CAOPEN, error opening device = %s\n", devname);
camsg(errstat);
exit(status);

h
/"

// Setup the parameters for the single transfer
I
c=1;
n=I;
f=16;
a=0;
swdata = 0x1122;
status = cam16(&hdl, &e, &n, &a, &f, swdata,errstat);
if (status & 1) 1= 1)

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library
{

printf("****ERROR**** cam16\n");

camsg(errstat);

exit(status);
I
// Close the device
/

status = caclos (&hdl, errstat);

if ((status & 1) 1= 1)

;

{
printf("****+*ERROR**** caclos\n");
camsg(errstat);
exit(status);

32

Windows 2000 Device Driver/API

2962 PCI Grand Interconnect

3.3.7

cam24

API Library

Syntax

int cam?24(

void **hdlptr,

short int *c,
short int *n,
short int *a,
short int *f,
int *data,

int errarr[]);

Purpose

The cam24 function is used to execute a 24-bit single transfer write, read or control operation.

Description
The cam24 function performs a single transfer operation to the CAMAC crate. This command
accommodates write, read and control operations. All data words moved using this command are 24-bits in

width.
Parameters
Parameter Name Direction Description
hdlptr Input Handle returned by caopen function
c Input Address of the chassis to be accessed
n Input Slot number of the module to be accessed
a Input Subaddress within the module to be accessed
f Input Function code to be performed
This parameter either specifies CAMAC write data for write
data Input/Output operations to the CAMAC crate or read data returned from
executing a CAMAC read operation.
o Returned 10-element status array. Please refer to Status Array
errart Output

section of this manual for additional information.

Return Values

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.

An invalid CAMAC sub-address (A) was found. The CAMAC subaddress was either
ERR701 less than O or greater than 15.

An invalid CAMAC function code (F) was found. The CAMAC Function code was
ERR704 either less than 0 or greater than 31.

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

An invalid CAMAC slot number (N) was found. The slot number was either less than |
ERR706 or greater than 30,

ERR714 [llegal CAMAC crate number.

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

main()
{
int status; // return status from the functions
char devname[] = "kpa00";
int *hdl; // Handle for operations
int errstat[STAMAX]; /1 array with list of errors
short n; // slot
short a; /l sub address
short f; /I function
short ¢; /l crate
int lwdata; // long write data
/"
// Open the device
/!
status = caopen(&hdl, devname, errstat);

/
// Check if device opened properly
/

if ((status & 1) ==0)

{

printf("CAOPEN, error opening device = %s\n", devname);
camsg(errstat);
exit(status);

}
/"

// Setup the parameters for the single transfer
1

Ilwdata = 0x112233;
status = cam24(&hdl, &c, &n, &a, &f, &lwdata, errstat);
if (status & 1) 1= 1)

34

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

I
8
printf("****ERROR**** cam24\n");
camsg(errstat);
exit(status);
}
I
/! Close the device
/
status = caclos (&hd], errstat);
if ((status & 1) 1=1)
I
L
printf("****ERROR**** caclos\n");
camsg(errstat);
exit(status);
}
}

API Library

35

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.3.8 camsg

Syntax
int camsg(int *error);

Purpose
The camsg function is used to translate error codes received from various CAMAC API functions and print
a message to the standard output device.

Description

The camsg function can be called whenever an error is detected as a result of executing a CAMAC API
function. An error code returned from the API functions can be printed to the standard output device. The
printed error may be as a result of an error from the device driver, the API, or from the operating system.

Parameters

Parameter Name Direction Description

Completion status or error code returned from a previous

error Input function call to a CAMAC API routine.

Return Values
For a comprehensive list, please refer to the Error Codes section of this manual.

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

main()
{
int status; // return status from the functions
char devname[] = "kpa00";
int *hdl; // Handle for operations
int errstat[STAMAX]; /I array with list of errors
/"

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

// Open the device
1
status = caopen(&hdl, devname, errstat);

/
// Check if device opened properly
/
if ((status & 1) == Q)
{
t
printf("CAOPEN, error opening device = %s\n", devname);

camsg(errstat);
exit(status);
}
/!
// Close the device
/!

status = caclos (&hdl, errstat);
if ((status & 1) 1= 1)
{

printf("****ERROR**** caclos\n");
camsg(errstat);
exit(status);

"
——

API Library

37

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.3.9 caopen

Syntax
int caopen(void **hdlptr,
char *device,
int *error

Purpose
The caopen function opens a session with the 2962.

Description

The caopen function assigns a channel to a device and initializes the CAMAC library so that subsequent
CAMAC operations may be executed. This function must be called at the start of a program before
attempting any CAMAC operations. Once the channel has been open to the device, it should not be re-
opened until the channel is unassigned by a call to the caclos function.

The caopen function initializes the handle parameter. The handle is a pointer to a process and controller
specific region that has been allocated for the user application. The caopen should be called as part of the
process’s initialization. The handle obtained as a result of the caopen function should be passed to any
other CAMAC API function requiring use of the handle. The caclos function is used to close the channel
and release this per process handle and controller space.

The second parameter in this function call is the name of the CAMAC driver associated with the 2962. In
order to open a valid connection to the driver, the device name of kpa00 must be used.

Parameters

Handle returned by caopen function
Character string containing the name of the device to be
opened. The device name for the 29672 is kpa00.

error Output Returned value

ﬁdlptr Input

device Input

Return Values
The most common error codes are listed here. For a comprehensive list, please refer
to the Error Codes section of this manual.

KSC_BAD_ARG One or more of the arguments is not readable or writeable.

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"

38

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h”
#include "cmdlist.h"

main()
{
int status; // return status from the functions
char devname[] = "kpa00";
int *hdj; // Handle for operations
int errstat{ STAMAX]; // array with list of errors
/
// Open the device
/
status = caopen(&hdl, devname, errstat);
/
// Check if device opened properly
/

if ((status & 1) == Q)
{

printf("CAOPEN, error opening device = %s\n", devname);

camsg(errstat);
exit(status);
h
/
// Close the device
I

status = caclos (&hd], errstat);
if ((status & 1) 1=1)
{

printf("****ERROR**** caclos\n");
camsg(errstat);
exit(status);

——

39

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.3.10 ccstat

Syntax
int cestat(void **hdlptr,
short int *c,
int data[]
int errarr[]);
Purpose

The ccstat function is used to retrieve the current status of the 3922 Crate Controller.

Description

The cestat function performs a read operation to the 3922 Crate Controller to determine its current status.
The status information returned includes the state of the CAMAC Inhibit (I) line, the state of the Service
Request Enable (LAM Enable) signal, the current LAM pattern. And the entire 3922 Control/Status
Register contents. As a result of the cestar function, the 2962 executes various CAMAC commands
directed at Station Number (N) 30 of the target crate. The N=30 commands are internal operations directed
at the 3922. Therefore, no CAMAC dataway cycles occur as a result of this command.

The third argument in the ccstat function returns a pointer to four 32-bit words. The contents of these
words are described below.

Word 1

Bit 31 Bit 1 Bit 0
0 INH

Word 2
Bit 31 Bit 1 Bit 0
0 SRR
ENA

Word 3
JSJ1IC] E— Bit24 | Bit23 Bit 0

0 LAM Status 24 through 1
Word 4
Bit 15 | Bit 14 Bit 13 | Bit 12-10 Bit 9 Bit 8 Bit7 Bit 6 Bit 5-3 Bit2 | Bit 1-0
OFF SRR RD
SLP | RSVD LINE 0 L.24 ENA RSVD INH 0 INH 0

INH ~Read as a 1 if the 3922 is asserting the CAMAC Inhibit (I) signal.

SRR ENA — Read back as a 1 if the Service Request on the 3922 is enabled.

LAM Status 24 — 1 is the LAM Status bits reflecting the current state of the CAMAC LAM signals.
RD INH - Read back as a 1 if the CAMAC Inhibit (I) signal is asserted by any module.

RSVD are reserved bits.

40

Windows 2000 Device Driver/AP]
2962 PCI Grand Interconnect

API Library
L24 — Read back as a one when Internal LAM 24 is set.
OFF LINE — Read back as a 1 when the 3922 front panel switch is in the Off-Line position.
SLP — Read back as a one is a Selected LAM is present in the crate.
Parameters
Parameter Name Direction Description
hdlptr Input Handle returned by caopen function
c Input Address of the chassis to be accessed
data Output Array of four 32-bit words reflecting the current state of the
3922 Crate Controller,
. Returned 10-element status array. Please refer to Status Array
errart Output

section of this manual for additional information.

Return Values

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.

Data buffer not long word aligned.

ERRI141
ERR60] An invalid channel number was specified. The passed handle is invalid.

An invalid CAMAC sub-address (A) was found. The CAMAC subaddress was either
ERR701 less than 0 or greater than 15.

An invalid CAMAC function code (F) was found. The CAMAC Function code was
ERR704 either less than 0 or greater than 31.

An invalid CAMAC slot number (N) was found. The slot number was either less than 1
ERR706 or greater than 30.

ERR714 Hlegal CAMAC crate number.

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

main()

{
int status; // return status from the functions
char devname[] = "kpa00";
int *hdl; /I Handle for operations

4]

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library
int erstat{STAMAX]; // array with list of errors
int CrateStatus[4]; // ccstat returns
short c; /I crate

/
// Open the device
/"
status = caopen(&hdl, devname, errstat);
/"
// Check if device opened properly
I

if ((status & 1) == 0)
It

§
printf("CAOPEN, error opening device = %s\n", devname);

camsg(errstat);
exit(status);
}
/"
/I Get the current status of the 3922 crate controller
/

status = ccstat (&hdl, &c, CrateStatus, errstat);
if (status & 1) 1= 1)

{
printf("****FERROR**** ccstat\n');
camsg(errstat);
exit(status);
}
/
// Close the device
/

status = caclos (&hdl, errstat);

if ((status & 1) 1= 1)

I

8
printf("****ERROR**** caclos\n");
camsg(errstat);
exit(status);

R o
——

42

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.3.11 cxilam

Syntax
int cxlam(

void **hdlptr,
short int *c,
short int *lam_id,
short int *lam_type,
short int *priority,
void (*apc_addr)(int *, struct KSC_handle *, int, void *),
int *error);

Purpose
The cxlam function is used to register a LAM for subsequent asynchronous notification of an application
program. This function call is similar in nature to the calam function call, except that it performs a more

Description

The calam function requests the Demand Process to service LAMs for the LAM specified in the call to the
function. The process of enabling a LAM to be serviced by the Demand Process is called booking a LAM.
When the LAM pipe message is received, an Asynchronous Procedure Call (APC) is made to the Demand
Process which disables the LAM and calls the user specified APC routine. Prior to executing the user's
APC routine, the Demand Process APC executes a specific sequence of CAMAC commands in order to
clear the pending LAM.

can determine which module in the crate is requesting service.

The Demand Process will try to clear the source of the LAM within a module by first using the selective
clear operation to the module generating the LAM. The selective clear operation performed is an

LAM, then the Demand Process executes an F(11)A(12) command to clear the LAM. Ifthis is not
successful, an F(10)A(0) is then tried. As a last resort, an F(10)A (/) command is executed where |
corresponds to the bit positions set in the LAM Status Register.

In general, it is up to the user application program to actually enable a module to generate a LAM. The

LAM Mask Registers and other associated enables for the LAM are taken care of by the cxlam functions.

enabled from a previous request to enable another LAM in the same crate.

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

If the LAM for a module in not enabled by the user application, a LAM that it generates will never be
serviced. If the user application enables the modules LAM prior to calling the cxlam routine, the LAM
could be generated by the module prior to it being booked. This situation MUST be avoided as the results
of this sequence may be erroneous.

Parameters
Parameter Name Direction Description
hdlptr Input Handle returned by caopen function
c Input Address of the chassis to be accessed
lam id Input Specifies the Station Number (N) of the LAM to be booked
Specifies the type of LAM booking. Type 0 indicates an
lam_type Input unbook and disable and a Type 1 indicates a remain booked
and clear LAM
priority Input Not Supported. This parameter is for legacy support
ape_addr Input This parameter specifies the address of the APC to be called
- once the LAM is generated.
error Output Error Return

Return Values

ERR714

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.

Illegal CAMAC crate number.

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"
/

// Global variable definitions....shared between main and APC routine

I
int *hdl;
HANDLE hEvent;

// Handle for operations

void ApcRoutine (int *dmd_id,

struct KSC_handle *handle,

int chassis,
void *UserArg);

main()

{

//'So APC can wake up mainline

44

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

int status; // return status from the functions
it iStatus;
char devname[] = "kpa00";

int errstat{ STAMAX]; /I array with list of errors
short n; /1 slot

short a; /! sub address

short £ // function

short ¢; /I crate

shortc 3296 =1; // crate address for 3296
shortn_3296 = 6; // slot number for 3296
short swdata; /I short write data

short srdata; // short read data

short nLamType;

short nLamPriority;

I
// Open the device
/!
status = caopen(&hdl, devname, errstat);
if ((status & 1) == 0)
{
printf("CAOPEN, error opening device = %s\n", devname);
camsg(errstat);
exit(status);
.

!
//
// Create event flag for notification of main process
/!
hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
/
// Check status of event creation
//
if (NULL == hEvent)
{
1
iStatus = GetLastError();
printf("Error creating event object: 0x%x\n", iStatus);
exit(iStatus);
1
s
/!
/! Set up the APC for the LAM (Book the LAM)
//
nLamType = 3;
nLamPriority = -1;

iStatus = cxlam(&hdl, // handle from caopen
&c 3296, // crate with our 3296
&n 3296, // slot containing 3296
&nLamType, // forever let us process it
&nLamPriority, // not used, but must be here
&ApcRoutine, // APC to call
errstat); // CAMAC status

if ((iStatus & 1) == 0)
I

3

API Library

45

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library
printf("Failure to book the 3296 LAM\n™);
camsg(errstat);
exit(iStatus);
H
/
// Enable the LS switch on the 3296 to generate a LAM
/
c=1;
n=n 3296,
=26;
a=0);
iStatus = cam16(&hd], // handle from caopen
&c,
&n,
&a,
&f,
&srdata,
errstat);

while (TRUE)
!

18
iStatus = ResetEvent(hEvent);

if (iStatus == FALSE)
{
iStatus = GetLastError();
printf("Error Resetting Event: 0x%x\n", iStatus);
cwait();

exit(iStatus);
h
/
// Waiting for a LAM
/

printf("Waiting for a LAM\n");
iStatus = WaitForSingleObject(hEvent, INFINITE);

if (WAIT_OBJECT 0 != iStatus)

f{

1
printf("Error in WaitForSingleObject: 0x%x\n", iStatus);
exit(iStatus);

!

J
printf{("Object Received #%d\n",++Ipcnt);
)

5
} // end of main

/I APC procedure.
/
// This routine is called when a LAM is received from the demand process
// as a result of the 3296 getting a LAM through its front panel switch.
/
void ApcRoutine(int *dmd_id,
struct KSC_handle *handle,

46

‘Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

int chassis,
void *user_arg)
]
1
/
/I Set the event so mainline will continue
/I
printf("APC triggered\n");
SetEvent(hEvent);

}

API Library

47

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

3.3.12 camlookupmsg

API Library

Syntax

void camlookupmsg (int *returnCode,

char *szSeverityBuffer,
int sizeSeverityBuffer,
char *szNameBuffer,
int sizeNameBuffer,
char *szDescBuffer,

int sizeDescBuffer);

Purpose

The camlookupmsg function is used to lookup descriptive strings associated with an error code.

Description

The camlookupmsg function takes an error code returned from other API functions and populates 3 user-
supplied buffers with strings that describe the severity of the return code, the name of the return code, and a
description of the return code. The user also specifies the size of each of the supplied buffers; this call will

truncate any message larger than the specified size.

This function is similar to function camsg, that passes the same information to standard output.

Parameters
Parameter Name Direction Description
returnCode Input Return Code from previous API call
szSeverityBuffer Input/Output User Buffer to hold the Severity Description
sizeSeverityBuffer Input Size of the Severity Buffer
szNameBuffer Input/Qutput User Buffer to hold the Name Description
sizeNameBuffer Input Size of the Name Buffer
szDescBuffer I[nput/Output User Buffer to hold the Return Code Description
sizeDescBuffer Input Size of the Return Code Description Buffer

For each of the three return strings (severity, name, and description), the caller supplies a buffer to be filled
in, and the size of the buffer. Return code strings that exceed the specified size of the buffer will be
truncated. 1t is valid to pass a NULL for any of the 3 buffers; any buffer specified as NULL will be

ignored, and no string will be returned for that category.

Return Values
None

Example

#include <stdio.h>

#include <stdlib.h>
#include <string.h>

48

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

main()

int status;
char devname[] = "kpa00";
int *hdl,
int errstat{f STAMAX];
char severity[256];
char name[256];
char description[256];
/
// Open the device
/"
status = caopen(&hdl, devname, errstat);

/!
/1 Check if device opened properly
/7
if ((status & 1) == 0)
{
camlookupmsg (&status,
severity,
sizeof(severity),
name,
sizeof(name),
description,
sizeof{description));
printf("CAOPEN failure:\n");
printf("\tName %s\n",name);
printf("\tSeverity %s\n", severity);
printf("\tDescription %s\n",description);
exit(status);

// return status from the functions

// Handle for operations
/l array with list of errors

API Library

49

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.4 CAMAC List Generation Routines

This chapter describes the routines provided that will allow the user to build CAMAC command lists
(CCL). The CAMAC command list provides an efficient mechanism to predetermine a sequence of
CAMAC operations to be performed and executed with a single function call. This functionality results in
an increase in performance since the application software does not have to make as many calls to the
CAMAC driver or the operating systermn.

The CAMAC command list generated by the application software must be unidirectional. This means that
all data transfers must be either transfer data to the CAMAC crate or from the CAMAC crate, but not both,
There is one exception to this rule, and that is the use of the Single Inline Write (cainaf) list instruction.
This instruction can be embedded in either a write list or aread list. The reason that this instruction is
allowed to be embedded in a list is that the associated write data for the command is contained in the list
itself. Therefore, a transfer of data from the write or read buffer is not required in order to obtain the write
data.

The 2915 requires that block transfers return multiples of thirty-two bit long words. Therefore, if a user
does a block transfer of five sixteen bit words, the list building routines will also store an instruction that
will return an additional sixteen zero bits to round the transfer up to a long word boundary. All data and
command list buffers must be long word aligned, even if their data type is a sixteen-bit integer.

The following table summarizes the available list building and support functions.

List

Building (Fj‘:;lctu;n Description
Function eeory
cainit Initialization Thig functign 18 usgd to initialize a CAMAC command list prior to
adding the instruction to be performed once the list is executed.
cablk Command This function adds a CAMAC block transfer operation to the
CAMAC command list.
This function adds a single inline write CAMAGC transfor operation
cainaf Command | to the CAMAC command list. This command does not transfer data

from the data buffer, but embeds the write data in the list.

This function adds a single CAMAC transfer operation to the
canaf Command | CAMAC command list. This command does transfer one 16 or 32-
bit data word from the specified buffer.

This function places the end-of-Iist marker in the CAMAC command
cahalt Command | list. The CAMAC command list processor executes the elements
contained in a list until this special halt command is encountered.

This function executes a preloaded CAMAC command list and waits

caexew Exccute until the requested operation is complete.
This function executes a preloaded CAMAC command list and does
not wait until the operation is complete. Instead, this function
caexec Execute

requires the use of an event flag to communicate completion
information to the calling process.

50

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.4.1 cablk

Syntax
long int cablk(struct s_header *header,

short *c,
short *n,
short *a,
short *f]
short *mode,
int *datcnt,
int *datind,
int *error

Purpose
The cablk function adds a command to the CAMAC command list which when executes results in a
CAMAC block transfer operation.

Description

The cablk function performs a block transfer operation to or from a CAMAC module(s) utilizing either 16-
bit or 24-bit data words. A portion of the mode parameter for this function is used to indicate the CAMAC
data word size. For the 16-bit data transfers, only the lower 16-bits of the 24 bit CAMAC data word are
used during the transfer.

The cablk function supports all four types of block transfer operations. These four modes consist of Q-
Ignore, Q-Stop,Q-Repeat and Q-Scan. Please referto the Transfer Mode section of this manual for details
on each operating mode. A portion of the mode parameter for this function is used to indicate the block
transfer-operting mode.

Parameters

escriptio
Header array that is built by the cainit function and contains
header Input pointers to the CAMAC command list and data buffer. This is
updated as additional list elements are added.
c Input Address of the chassis to be accessed
n Input Slot number of the module to be accessed
a Input Subaddress within the module to be accessed
f Input Function code to be performed
Type of CAMAC block transfer to perform. Please refer to
mode Input Transfer Mode section of this manual for additional
information. (See below)
datent Input Number of CAMAC operations to perform

51

Windows 2000 Device Driver/API

2962 PCI Grand Interconnect

API Library
Parameter Name Direction Deseription
This parameter is returned with the index in to the data buffer
datind Output marking the starting location for the block of data used for the
operation.
error Output Returned error code

The mode parameter in the cablk function is used to specify the CAMAC block transfer Q-mode, the
CAMAC data word size, and a specification as to the termination technique when a No-X condition occurs.
The following table shows the available selections as #defines in the kscuser.h include file. Note that only
one defined Q-mode or word size can be specified for each block transfer.

#define Description
QSTP Selects the Q-Stop Block Transfer Mode
QIGN Selects the Q-Ignore Block Transfer Mode
QRPT Selects the Q-Repeat Block Transfer Mode
QSCN Selects the Q-Scan Block Transfer Mode
Q-mode Block Transfer Selection
#define Description
WTS16 Selects 16-bit CAMAC Data Word Size
WTS24 Selects 24-bit CAMAC Data Word Size
CAMAC Data Word Size Selection
#define Description
Inclusion of the AD in the mode description causes the
AD CAMAC command processor to ignore No-X conditions
during processing.

CAMAC Data Word Size Selection

Return Values

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.

ERR702 Invalid Mode specification

An invalid CAMAC sub-address (A) was found. The CAMAC subaddress was either
ERR701 less than 0 or greater than 15.

An invalid CAMAC block transfer type was found. The legal block transfer types are

QSTP, QIGN, QRPT, and QSCN with corresponding values of 0, 8, 16, and 24,
ERR703 P
respectively.

ERR712 The CAMAC command list is not large enough to hold all the commands.

ERR715 Direction error, the CAMAC command list should be unidirectional.

52

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

main()

{

API Library

int status; // return status from the functions

char devname[] = "kpa00";
int *hdl,
int errstat;
short n;
short a;
short f}
short c;
short gqmode;
int LongReadBuffer[8192];
unsigned long TransferCount;
int camac_list[8192];
int Datalndex;
int listmax;
int datamax;
int indicator;
int zero=0;
struct s_header header;
/l
// Open the device
I

status = caopen(&hdl, devname, errstat);

/
// Check if device opened properly
I

if ((status & 1) == 0)

1

[§

// Handle for operations
// array with list of errors
/! slot

/I sub address

/{ function

/I crate

//" g mode for transfer

// short write data buffer
// transfer count for block
// list for camac processing
// data index

// max size of list

// max size of data

/! zero value

printf("CAOPEN, error opening device = %s\n", devname);

camsg(errstat);
exit(status);

}
listmax = 1024;

datamax = 1024;

n=1;

=16;

a=0;

gmode = QIGN | WTS24 ;

53

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

status = cainit(&header, camac_list, &listmax, LongReadBuffer, &datamax,
&zero, &zero, &zero, &zero, errarr);
if ((status & 1) 1= 1)
{
printf("****ERROR**** cainit\n");
camsg(errstat);

gqmode = QIGN | WTS24 ;

TransferCount = 100;

status = cablk (&header, &c, &n, &a, &f, &qmode, & TransferCount, &Datalndex, errstat);
if ((status & 1) I=1)

{

printf(""****ERROR**** cablk\n");
camsg(errstat);

}

status = cahalt(&header, errarr);
if ((status & 1) I=1)
I

v
printf("****ERROR**** cahalt\n");

camsg(errstat);

i

status = caexew(&header, &hdl, errarr);
if ((status & 1) 1= 1)
I

1
printf("****ERROR**** caexew\n");
camsg(errstat);

exit(status);

}

1

// Close the device

1
status = caclos (&hdl, errstat);
if ((status & 1) I=1)
{

printf("****ERROR**** caclos\n");
camsg(errstat);
exit(status);
h
}

54

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

APIT Library

3.4.2 caexec
Syntax
int caexec(structs_header *header,
void **hdl,
int *error,
HANDLE event
);

Purpose

The caexec function loads and executes a CAMAC command list without waiting for the routine to
complete. An event flag must be used with this function in order to provide a notification mechanism to
the main application on completion.

Description

The caexec function executes a CAMAC command list built using the CAMAC list building routines.
Control is returned to the user process after the operation is queued to the driver. The user application must
then check the event flag to determine when the requested operation is complete.

The execution of a CAMAC command list is beneficial when an application program needs to perform
computations or other activity while the command list is executed.

Parameters
header Input pointers to the CAMAC command list and data buffer. This is
updated as additional list elements are added.
hdlptr Input Handle returned by caopen function
error QOutput Error Code
event Input Event to be signaled when the operation is complete.

Return Values
The most common error codes are listed here. For a comprehensive list, please refer to

the Error Codes section of this manual.

ERRI43 The CAMAC header is not initialized,

ERRI44 The CAMAC header is initialized, but not correctly.

ERR601 An invalid channel number is specified.

55

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

API Library

HANDLE hEvent; /I event for caexe (w/o wait)
main()
{

int status; // return status from the functions

char devname[] = "kpa00";
int *hdl;
int errstat{ STAMAX];
short n;
short a;
short f;
short c;
short qmode;
int LongReadBuffer[8192];
unsigned long TransferCount;
int camac_list[8192];
int Datalndex;
int listmax;
int datamax;
int indicator;
int zero=0;
struct s_header header;
"
// Open the device
/

status = caopen(&hdl, devname, errstat);

1
// Check if device opened properly
//

if ((status & 1) == 0)

f

§

// Handle for operations
// array with list of errors
/I slot

// sub address

/I function

/I crate

// g mode for transfer

// short write data buffer
// transfer count for block
// list for camac processing
// data index

// max size of list

// max size of data

/] zero value

printf("CAOPEN, error opening device = %s\n", devname);

camsg(errstat);
exit(status);

!

}
hEvent = CreateEvent(NULL, TRUE, FALSE, NULL); // create event for done indication

status = ResetEvent(hEvent);

if (status == FALSE)
{

status = GetLastError();

printf("Error Resetting Event: 0x%x\n", status);

56

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

¥

if (NULL == hEvent)
{
status = GetLastError();
printf("Error creating event object: 0x%x\n", status);

}

listmax = 1024;
datamax = 1024;

=0;
qmode = QIGN | WTS24 ;
status = cainit(&header, camac_list, &listmax, LongReadBuffer, &datamax, errarr,

&zero, &zero, &zero, &zero, errarr);
if ((status & 1) 1= 1)
{

printf("****ERROR**** cainit\n"};
camsg(errstat);
}
c=1;
n=1;
f=0;
a=0;
qmode = QIGN | WTS24 ;
TransferCount = 100 ;
status = cablk (&header, &c, &n, &a, &f, &qmode, &TransferCount, & Datalndex, errarr);
if ((status & 1) 1= 1)
{
printf("****ERROR**** cablk\n");
camsg(errstat);
1
J
status = cahalt(&header, errarr);
if ((status & 1) I=1)
It

[§
printf("****ERROR**** cahalt\n");

camsg(errstat);
y
§
status = caexec(&header, &hdl, errarr, hEvent);
if ((status & 1) 1= 1)
.

t
printf("****ERROR**** caexec\n");
camsg(errstat);
exit(status);
}
status = WaitForSingleObject(hEvent, INFINITE);

if (WAIT _OBJECT 0 != status)

{

printf("Error in WaitForSingleObject: 0x%x\n", status);
1
g

57

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

I

// Close the device

1
status = caclos (&hdl, errstat);
if ((status & 1} I=1)
!

8
printf("****ERROR**** caclos\n");
camsg(errstat);
exit(status);
i
¥

API Library

58

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

APT Library

3.4.3 caexew
Syntax
int caexew(struct s_header *header,
void **hdl,
int *error,

);

Purpose

The caexew function loads and executes a CAMAC command list and waits for the routine to complete. If
processing needs to continue while the CAMAC command list is being processed, use the caexec function
that incorporates use of event notification for completion indication.

Description
The caexew function executes a CAMAC command list built using the CAMAC list building routines.
Control is not returned to the user process until the operation is complete.

Parameters
Parameter Name Direction Description
Header array that is built by the cainit function and contains
header Input pointers to the CAMAC command list and data buffer. This is
updated as additional list elements are added.
hdlptr Input Handle returned by caopen function
error QOutput Error Code

Return Values
The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.

ERRI43 The CAMAC header is not initialized.

ERR144 The CAMAC header s initialized, but not correctly.

ERRG60O1 An invalid channel number is specified.

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"

59

Windows 2000 Device Driver/API

2962 PCI Grand Interconnect

#include "kscuser.h
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

main()

{

API Library

int status; / return status from the functions

char devname[] = "kpa00";
int *hdl;
nt errstat{f STAMAX];
short n;
short a;
short f;
short c;
short qmode;
int LongReadBuffer[8192];
unsigned long TransferCount;
int camac_list[8192];
int Datalndex;
int listmax;
int datamax;
int indicator;
int zero=0;
struct s_header header;
/
// Open the device
/!

status = caopen(&hdl, devname, errstat);

"

// Check if device opened properly

/!
if ((status & 1) == 0)
{

// Handle for operations
// array with list of errors
/] slot

// sub address

/I function

/! crate

/I q mode for transfer

// short write data buffer
// transfer count for block
// list for camac processing
// data index

// max size of list

// max size of data

// zero value

printf("CAOPEN, error opening device = %s\n", devname);

camsg(errstat);
exit(status);

1
I

listmax = 1024;
datamax = 1024;

n=1;

=16,

a=0;

gmode = QIGN | WTS24 ;

status = cainit(&header, camac_list, &listmax, LongReadBuffer, &datamax, errarr,

&zero, &zero, &zero, &zero, errart);

if ((status & 1) I=1)
{

printf("****ERROR**** cainit\n");

camsg(errstat);

60

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

o -

H

1
L

0;

a=0;

qmode = QIGN | WTS24 ;
TransferCount = 100 ;

[

’TPS

status = cablk (&header, &c, &n, &a, &f, &qmode, & TransferCount, &Datalndex, errarr);

if ((status & 1) 1= 1)
El

t
printf("****F*ERROR**** cablk\n");
camsg(errstat);

1

J

status = cahalt(&header, errarr);

if ((status & 1) I=1)

{

1
printf("****ERROR**** cahalt\n");
camsg(errstat);

1

i)

status = caexew(&header, &hdl, errarr);

if ((status & 1) I=1)

il

t
printf("****ERROR**** caexew\n");
camsg(errstat);
exit(status);
)
/
// Close the device
/!
status = caclos (&hdl, errstat);
if ((status & 1) 1= 1)
{

camsg(errstat);

exit(status);
!
J

API Library

61

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.4.4 cahalt

Syntax
int cahalt(struct s_header *header,
int *error

);

Purpose

The cahalt function adds a command to the CAMAC command list that marks the end of the CAMAC list.
This function must always be called in order to provide a terminating entry in the list.

Description

The cahalt function adds a command to the CAMAC command list. This command is used to indicate the
termination of a CAMAC command list. The CAMAC command processor executes list instructions until
this halt is encountered.

Parameters
‘Parameter Name Direction Description
Header array that is built by the cainit function and contains
header Input pointers to the CAMAC command list and data buffer. This is
updated as additional list elements are added.
error Output Error Code

Return Values
The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.
ERRI43 The CAMAC header is not initialized.

ERRI144 The CAMAC header is initialized, but not correctly.

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

62

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

main()

{

int status; // return status from the functions

char devname[] = "kpa00";
int *hdl,

int errstatf STAMAX];
short n;

short a;

short f;

short c;

short gmode;

int LongReadBuffer[8192];
unsigned long TransferCount;
int camac_list[8192];

int Datalndex;

int listmax;

int datamax;

// Handle for operations
/1 array with list of errors
/] slot

// sub address

/! function

/! crate

/I g mode for transfer

/! short write data buffer
// transfer count for block
/1 list for camac processing
// data index

// max size of list

// max size of data

int indicator;
int zero=0; // zero value
struct s_header header;
/!
// Open the device
i
status = caopen(&hdl, devname, errstat);

//
/I Check if device opened properly
/"

if ((status & 1) ==0)

printf("CAOPEN, error opening device = %s\n", devname);
camsg(errstat);
exit(status);

¥
listmax = 1024;

datamax = 1024,

n=1;

f=16;

a=0;

gmode = QIGN | WTS24 ;

status = cainit(&header, camac_list, &listmax, LongReadBuffer, &datamax, errarr,

&zero, &zero, &zero, &zero, errarr);

if ((status & 1) I=1)

I

d
printf("****ERROR**** cainit\n");
camsg(errstat);

O =~

I

H

It

b

"“’75

s

63

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

a=0;

gqmode = QIGN | WTS24 ;

TransferCount = 100 ;

status = cablk (&header, &c, &n, &a, &f, &gmode, & TransferCount, &Datalndex, errarr);
if ((status & 1) I=1)

{

printf("**#**ERROR**** cablk\n");

camsg(errstat);

)
b

status = cahalt(&header, errarr);

if ((status & 1) 1= 1)

f

1
printf("****ERROR**** cahalt\n");
camsg(errstat);

1

§

status = caexew(&header, &hdl, errarr);
if ((status & 1) 1= 1)

[

1
printf("****ERROR**** caexew\n");
camsg(errstat);
exit(status);

}

/"
// Close the device
/!

status = caclos (&hdl, errstat);
if ((status & 1) 1= 1)

{

printf("****ERROR**** caclos\n");
camsg(errstat);
exit(status);

1

b]

}

API Library

64

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.4.5 cainaf

Syntax
int cainaf(struct s_header *header,
short *¢,
short *n,
short *a,
short *f,
short *mode,
int *data,
int *error
)
Purpose

The cainaf function adds a command to the CAMAC command list which when executed results in single
CAMAC write operation. The data for this operation is included in the CAMAC command list and not
extracted from the data buffer.

Description

The cainaf function adds a single inline write operation to the CAMAC command list. The write data for
the cainaf instruction is contained in the CAMAC command list. Therefore, this instruction does not
require data transfer from the data buffer for the list. This instruction is beneficial for setting up CAMAC
module parameters that do not vary from list execution to list execution. Since this command does not
transfer any data from the list data buffer, one can embed this instruction in either a write CAMAC
command list or a read CAMAC command list.

Parameters

Header array that is built by the cainit function and contains
header Input pointers to the CAMAC command list and data buffer. This is
updated as additional list elements are added.
c Input Address of the chassis to be accessed
n Input Slot number of the module to be accessed
a Input Subaddress within the module to be accessed
f Input Function code to be performed
Type of CAMAC operation to perform. Please refer to
mode Input Transfer Mode section of this manual for additional
information. (See below)
data Input 32-bit word reserved for speciﬁcgtion of the CAMAC write
data embedded in the list.
error Output Error Code

The mode parameter in the cainaf function is used to specify the CAMAC transfer Q-mode, the CAMAC
data word size, and the termination technique used when a No-X condition occurs. Even though the cainaf
only executes a single write operation, the CAMAC Q and X returns are evaluated and continued list
processing is based on their values as it relates to the selected Q-mode. The following table shows the

65

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

available selections as #defines in the kscuser. /1 include file. Note that only one defined Q-mode or word
size can be specified for each transfer.

#define Description
QSTP Selects the Q-Stop Block Transfer Mode
QIGN Selects the Q-Ignore Block Transfer Mode
QRPT Selects the Q-Repeat Block Transfer Mode
QSCN Selects the Q-Scan Block Transfer Mode
Q-mode Transfer Selection
fdefine Description
WTS16 Selects 16-bit CAMAC Data Word Size
WTS24 Selects 24-bit CAMAC Data Word Size
CAMAC Data Word Size Selection
#define Deseription
Inclusion of the 4D in the mode description causes the
AD CAMAC command processor to ignore No-X conditions
during processing.

CAMAC Data Word Size Selection

Return Values

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.

ERRI43 The CAMAC header is not initialized,

ERRI44 The CAMAC header is initialized, but not correctly.
Example
#include <stdio.h>
#include <stdlib.h>

#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h”
#include "strfunc.h"
#include "cmdlist.h"

main()

{

int status;

// return status from the functions

char devname[] = "kpa00";

66

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

nt *hdl;
int errstatf STAMAX];
short n;
short a;
short f}
short c;
short qmode;
int lwdata;
mt camac_list[8192];
int Datalndex;
int listmax;
int datamax;
int indicator;
int zero=0;
struct s_header header;
/!
// Open the device
I

status = caopen(&hdl, devname, errstat);

i
// Check if device opened properly
/"

if ((status & 1) == 0)

API Library

// Handle for operations
// array with list of errors
/I slot

// sub address

/I function

/[crate

// q mode for transfer

// write data

// list for camac processing
// data index

// max size of list

// max size of data

// zero value

printf("CAOPEN, error opening device = %s\n", devname);

camsg(errstat);
exit(status);
¥
listmax = 1024;
datamax = 1024;

status = cainit(&header, camac_list, &listmax, LongReadBuffer, &datamax, errarr,

&zero, &zero, &zero, &zero, errarr);

if ((status & 1) 1=1)
.

t
printf("****ERROR**** cainit\n");

camsg(errstat);

c=1;

n=1;

f=16;

a=0;

qmode = QIGN | WTS24 ;
lwdata = 0x112233;

status = cainaf (&header, &c, &n, &a, &f, &qmode, &lwdata, errarr);

if ((status & 1) I=1)

{

printf("****ERROR**** cainaf\n");

camsg(errstat);
1
s
status = cahalt(&header, errarr);
if ((status & 1) 1= 1)

67

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

{
printf("****ERROR**** cahalt\n");

camsg(errstat);

1
b
status = caexew(&header, &hdl, errarr);

if ((status & 1) 1= 1)

printf("****F*ERROR**** caexew\n");
camsg(errstat);

exit(status);

}

/!
// Close the device

/
status = caclos (&hdl, errstat);

if ((status & 1) 1=1)
f

8
printf("****ERROR**** caclos\n");
camsg(errstat);

exit(status);

}

1
1]

API Library

68

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.4.6 cainit

Syntax
int cainit(struct s_header *header,
void *control list,

int *control _list_size,
short *data buffer,

int *data buffer size,
int *status_buffer,

int *WC_buffer,

int *WC buffer size,
int *QXE buffer,

int *QXE_buffer size,
int *error);

Purpose
The cainit function initializes the CAMAC list building header. This function must be called prior to
building a CAMAC command list.

Description

The cainit function is used to initialize the header and other data structures for the CAMAC command lists.
This function should be called whenever a new CAMAC command list is built. The header holds the sizes,
lengths, and pointers to other data structures used during processing time. The header is a parameter for all
subsequent calls to the list building functions.

The cainit function requires array parameters that should be declared sufficiently large enough to contain
all the list processing elements and data buffers. The data buffer used for the CAMAC command list must
be large enough to “hold” all the data for a CAMAC list operation. All data transferred throughout the list
operation is moved through this buffer. When generating a list of operations, a tally must be made to
ensure that the total number of data words transferred for each individual list element is accounted for when
determining the total data buffer size.

Parameters

Parameter Name Direction Description

The header information contains pointer to other data
header Input structures, lengths of structures, and other vital information
regarding the operation of the CAMAC command processor.

This array is used to hold the CAMAC command list. The
control_list Input control list should be declared as a longword array with a size
of control list size.

This parameter specifies the number of elements available in

control_list_size Input the CAMAC command list.

This array holds all the data for the associated data transfers
contained in the CAMAC command list. The shortword array
should be declared with a size of data_buffer-size. The address
of this array must be longword aligned and is initialized when

data_buffer Input/Output

69

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library
Parameter Name Direction Description
the cainit function is used.
This parameter specifies the size of the data_buffer. The
data buffer size I[nput buffer must be declared by the user sufficiently large so that
the array can hold all requests from the CAMAC command list.
status buffer Input This parameter is not used. but here for legacy support. It may
— be set to a pointer to a value of zero.
WC buffer Input This parameter is not used. but here for legacy support. It may
- be set to a pointer to a value of zero.
WC buffer size Tnput This parameter is not used. but here for legacy support. It may
— - be set to a pointer to a value of zero.
QXE_buffer Input This parametsr is not used. but here for legacy support. It may
- ¢ set to a pointer to a value of zero.
QXE, buffer size Input This parametgr is not used. but.here for legacy support. It may
— e set to a pointer to a value of zero.
error Output Error Code

Return Values

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.

Th header size does not match the header size of the current version.

ERRIO3
ERRIAI Data buffer not longword aligned.
ERRI42 Control list buffer not longword aligned.
Example
#include <stdio.h>
#include <stdlib.h>

#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

main()

{

int status;

// return status from the functions

char devname[] = "kpa00";

int *hdl; // Handle for operations
int errstat{ STAMAX]; // array with 1ist of errors
short n; /I slot

short a; // sub address

short f; // function

short ¢; /I crate

70

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

short gmode;

int LongReadBuffer[8192];
unsigned long TransferCount;
int camac_list[8192];

int Datalndex;

int listmax;

int datamax;

/I q mode for transfer

// short write data buffer

// transfer count for block
// list for camac processing
/ data index

// max size of list

// max size of data

int indicator;
int zero=0;
struct s_header header;

// zero value

1
// Open the device
//
status = caopen(&hdl, devname, errstat);
/1
/1 Check if device opened properly
//

if ((status & 1) == 0)

printf("CAOPEN, error opening device = %s\n", devname);
camsg(errstat);
exit(status);

}
listmax = 1024;
datamax = 1024;

n=1;

f=16;

a=0;

qmode = QIGN | WTS24 ;

status = cainit(&header, camac_list, &listmax, LongReadBuffer, &datamax, errarr,

&zero, &zero, &zero, &zero, errarr);

if ((status & 1) 1=1)

f

k8
printf("****ERROR**** cainit\n");
camsg(errstat);

a=();
qmode = QIGN | WTS24 ;
TransferCount = 100 ;
status = cablk (&header, &c, &n, &a, &f, &gmode, & TransferCount, &Datalndex, errar);
if ((status & 1) 1=1)
{
printf("****ERROR**** cablk\n");
camsg(errstat);

status = cahalt(&header, errarr);
if ((status & 1) 1= 1)

{

i

API Library

71

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

printf("***+*ERROR**** cahalt\n");
camsg(errstat);

status = caexew(&header, &hdl, errarr);
if ((status & 1) 1=1)

printf("****ERROR**** caexew\n");
camsg(errstat);
exit(status);
}
/
// Close the device
!
status = caclos (&hdl, errstat);

if ((status & 1) 1= 1)
{

printf("****ERROR**#* caclos\n");
camsg(errstat);
exit(status);

}

}

API Library

72

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.4.7 canaf

Syntax
int canaf(struct s_header *header,
short *c,
short *n,
short *a,
short *f)
short *mode,
int *Datlnd,
int *error
);
Purpose

The canaf function adds a command to the CAMAC command list which when executed results in a single
CAMAC transfer.

Description

The canaf function is used to add a single CAMAC transfer operation to the CAMAC command list. This
function will only execute a single transfer. For block transfer operations, the cablk list instruction should
be used.

This command will allocate one element in the CAMAC command list. If the CAMAC operation is a read
or write operation, then space in the data buffer will also be allocated for the command entry. The
parameter Datind will be returned with a value corresponding to the index into the data buffer where the
commands’ data is located. Note that the data buffer used to transfer data for these single operations is
specified in the cainit function,

The canaf function supports all four types of transfer operations. These four modes consist of Q-Ignore, Q-
Stop, Q-Repeat and Q-Scan. Please refer to the Transfer Mode section of this manual for details on each
operating mode. A portion of the mode parameter for this function is used to indicate the block transfer-
operating mode.

Parameters
Parameter Name Direction Description
Header array that is built by the cainif function and contains
header Input pointers to the CAMAC command list and data buffer. This is
updated as additional list elements are added.
C Input Address of the chassis to be accessed
N Input Slot number of the module to be accessed
A Input Subaddress within the module to be accessed
F Input Function code to be performed
Type of CAMAC block transfer to perform. Please refer to
mode Input Transfer Mode section of this manual for additional
information. (See below)

73

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library
Parameter Name Direction Deseription
This parameter is returned with the index in to the data buffer
DatInd Output marking the starting location for the word of data used for the
operation,
error Output Error Code

The mode parameter in the canaf function is used to specify the CAMAC transfer Q-mode, the CAMAC
data word size, and the termination technique used when a No-X condition occurs. Even though the canaf’
only executes a single write operation, the CAMAC Q and X returns are evaluated and continued list
processing is based on their values as it relates to the selected Q-mode. The following table shows the

available selections as #defines in the kscuser.h include file. Note that only one defined Q-mode or word
size can be specified for each transfer.

#define Description
QSTP Selects the Q-Stop Block Transfer Mode
Selects the Q-Ignore Block Transfer Mode
QRPT Selects the Q-Repeat Block Transfer Mode
QSCN Selects the Q-Scan Block Transfer Mode

Q-mode Transfer Selection

#define Description
WTS16 Selects 16-bit CAMAC Data Word Size
WTS24 Selects 24-bit CAMAC Data Word Size

CAMAC Data Word Size Selection

#define Description

Inclusion of the AD in the mode description causes the
CAMAC command processor to ignore No-X conditions
during processing.

CAMAC Data Word Size Selection

Return Values

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.

The CAMAC header is not initialized.

ERRI43
ERRI44 The CAMAC header is initialized, but not correctly.
A CAMAC in-line read operation was specified. Only CAMAC write and control
ERR202
functions can be specified as in-line operations.
Example
#include <stdio.h>
#include <stdlib.h>

74

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

main()
{ .
mnt status;
char devname[] = "kpa00";
int *hdl,
int errstat[STAMAX];
short n;
short a;
short f}
short c;
short gmode;
int LongReadBuffer[8192];
int camac_list[8192];
int Datalndex;
int listmax;
int datamax;
int indicator;
int zero=0;
struct s_header header;
I
// Open the device
/!
status = caopen(&hdl, devname, errstat);

i
// Check if device opened properly
1

if ((status & 1) ==0)

.

L

API Library

// return status from the functions

// Handle for operations
// array with list of errors
/I slot

// sub address

/I function

/' crate

/I q mode for transfer

// short write data buffer
// list for camac processing
// data index

// max size of list

// max size of data

/! zero value

printf("CAOPEN, error opening device = %s\n", devname);

camsg(errstat);
exit(status);

}
listmax = 1024;
datamax = 1024;

status = cainit(&header, camac_list, &listmax, LongReadBuffer, &datamax, errarr,

&zero, &zero, &zero, &zero, errarr);

if ((status & 1) 1= 1)

{
printf("****ERROR**** cainit\n");
camsg(errstat);

n=1;

75

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

f=0;

a=0;

qmode = QIGN | WTS24 ;

TransferCount = 100 ;

status = canaf (&header, &c, &n, &a, &f, &qmode, &Datalndex, errarr);
if ((status & 1) I=1)

printf("****+*ERROR**** canafin");
camsg(errstat);

status = cahalt(&header, errarr);

if ((status & 1) 1= 1)

p

1
printf("****ERROR**** cahalt\n");
camsg(errstat);

1
}

status = caexew(&header, &hdl, errarr);
if ((status & 1) I= 1)
{
printf("****ERROR**** caexew\n");
camsg(errstat);
exit(status);
b
i
// Close the device
1
status = caclos (&hdl, errstat);
if ((status & 1) 1= 1)

printf("***¥FERROR**** caclos\n");
camsg(errstat);
exit(status);

¥

1
i)

76

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.5 VXI List Generation Interface Library

3.5.1 Library Usage

The List Generation Library is implemented as a set of linkable routines in the KSCAPI library. The list
building routines are prototyped in the “kscapi.h” file. Additionally, a set up “C” macros is also available
to create inline lists.

The list generation routines are provided to help in the creation of lists using a more structured convention.
Creating a list involves first allocating memory to store the list and then calling KSC init list. This routine
will return back a pointer to a structure of type ksc_list that will be used by all of the other list generating
routines. If the user is building multiple lists, the user must provide storage for each of the lists and call
KSC_init_list for each list. The user may build multiple lists concurrently as all information about the
current state of each list is maintained by the structure allocated by KSC init list. The list must be
allocated on a long word boundary.

The user calls the individual functions to “compile” the instruction list into the user provided list memory.
Each callable function in the library is usually associated with one particular command instruction. There
exist functions that implement standard I[F.. ELSE...ENDIF and SWITCH...CASE... ENDCASE properties
found in most high-level languages. The list-generating library keeps track of calculating offsets and
inserting the proper commands into the list, making such IF and CASE blocks much easier to develop.

Upon completion of making a list, KSC_finish should be called to clean up the list and check for any
possible errors in the list. The routine KSC_dump_list can be called to display the compiled list to standard
output.

A sample program that creates a list follows. This list does not perform any real functionality, and is
provided merely as an example for list creation. Do not attempt to actually execute the list!

/*
TEST PROGRAM
This program will demonstrates the use of the List
Generation functions
*/
#include <stdio.hs>
#include <string.h>
#include <stdlib.hs>
#include "../include/ksc_genlist.h"

main ()

{

/* Variable defs */

short *mem; /* Our memory buffer =/
struct ksc_list *list; /* Our list definition structure

*/

77

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library
int size; /* Our value of how big list is
*/
/ *
* Begin here
*/
mem = malloc(1024); /* Allocate a 1024 byte
buffer */
KSC_init_ list(mem, 1024, &list);
/*
* List code begins here
*/
KSC_bdcast_trigger(list);
KSC_blOCk_rW(liSt,ABORT,WSB,DECADR,15,33,READ,INTERNAL,
0x7F7F7F, 0x252525) ;
KSC_if(list,EQ,OXFFFFFF,OX353535);
KSC_execute msg _dev(list,0x75,0,1,20,50,"A simple
text block");

KSC_gen demand (list,200);
KSC endif (list);

KSC_inline_rw(list,ABORT,WSB,DECADR,15,33,WRITE,INTERNAL,Oxl3300)

7

KSC_inline_w(list,ABORT,WSB,DECADR,15,33,INTERNAL,OX22222,OX53535
3);
KSC if (list,EQ, OXFFFF, 0x616161) ;
KSC_load test_val(list, 15,WS16,0x7A7A7A);
KsC mark list(list);
KSC else(list);
KSC_slave_trigger(list, 33, 1,1,0,1,0);
KSC_if (list,EQ, OXFFFF, 0x616161) ;
KSC_load_test_val(list,
15,WS16,0x7A7A74) ;
KSC mark list(list);
KsSC _else(list);
KSC_slave_trigger(list, 33, 1,1,0,1,0);
KSC_store_flag(list, 0x5050) ;
KSC endif (list);
KSC_store_flag(list, 0x5050);
KSC endif (list);

KSC_time stamp(list);
KSC_switch(list, OXxFAFAFA) ;

KSC_case(list,0x101010);
KSC_load test_wval(list, 15,WS16,0x7A7A7A) ;

78

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

KSC_mark_list(list);
KsC_if (list, EQ, OXFFFFFF, 0x353535) ;

KSC_execute_msg_dev(list,0x75,0,1,20,50,"A simple text block");
KSC_gen_demand (list,200) ;
KSC _endif (list);

KSC case(list,0x202020);
KSC_load_test_val(list, 15,WS16,0x717171);
KSC_mark list(list);

KSC case(list,0x303030);
KSC_load_test_val (list, 15,WS16,0x2b2b2b) ;
KSC_mark_list(list);

KSC_endcase (list) ;

KSC_end list(list);

/*
* List code ends here

*/

KSC finish(list);

/*

* Write the list out in a symbolic fashion (see following
output)

*/

KSC_dump_list (mem,0,1); /* Display the built list */

This code creates the following output list:

LOC DATA CODE

0000 8041 BRDCST_TRIG
0000
0000
0000
0008 47AE BLK RW ab:0 ws:3 am:1 chas_adr:0F adr mod:21 rw:1 int:1
addr:007F7F7F tr_ cnt:00252525
coz21
TF7F
007F
2525
0025
0014 8084 IF cond:0 mask:00FFFFFF test:00353535
0000
FFFF

79

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

00FF
3535
0035
002A
0022 8090 EXEC_MSG_DEV addr:75 term:0 rply:1 time out:0014
rply 1lng:32
cmd_1lng:14 [A simple text block]
8075
0014
1432
2041
6973
706D
656C
7420
7865
2074
6C62
636F
006B
003E 8091 RESUME MSG_DEV
0000
0042 8102 GEN_DEMAND pattern:C8
00C8
0046 8083 END_ OF SUBLIST
0000
END IF
004A 478E INL_RW ab:0 ws:3 am:1 chas_adr:0F adr mod:21 rw:0 int:1
addr:00013300
8021
3300
0001
0052 47CE INLN_W ab:0 ws:3 am:1 chas_adr:0F adr mod:21 rw:0 int:1
addr:00022222 data:00535353
8021
2222
0002
5353
0053
O05E 8085 IF(ELSE) cond:1 mask:0000FFFF test:00616161
0001
FFFF
0000
6161
0061
0014
006C 8082 LD_TEST VAL add mod:0F ws:2 addr:007A7A7A
800F
TATA
007A
0074 8080 MRK_ LST_ADR

80

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

0000
0078 8083 END_OF_SUBLIST
0000
007C 0042 ELSE
007E 8040 ADDR_SLV_TRIG chas_adr:zl TTL: 1 ECL:1 FP:0 list:1
timst:0
0021
1101
0000
0086 8085 IF(ELSE) cond:1 mask:0000FFFF test:00616161
0001
FFFFE
0000
6161
0061
0014
0094 8082 LD_TEST VAL add mod:0F ws:2 addr:007A7A7A
800F
TATA
007A
009C 8080 MRK_LST_ ADR
0000
O0OAO 8083 END_OF_SUBLIST
0000
00A4 0012 ELSE
00A6 8040 ADDR_SLV_TRIG chas_adr:2l TTL: 1 ECL:1 FP:0 list:1
timst:0
0021
1101
0000
00AE BOFS8 STO_FLG flag:5050
5050
00B2 8083 END OF SUBLIST
0000
END_IF
00B6 80F8 STO_FLG flag:5050
5050
00BA 8083 END OF SUBLIST
0000
END_IF
O00BE 8002 READ _TIME STAMP
0000

00C2 8086 SWITCH mask:00FAFAFA
007E
FAFA
0O0FA
00CA 1010 CASE test_wval:00101010
0010
004A
00D0 8082 LD_TEST VAL add mod:0F ws:2 addr:007A7A7A
800F

81

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

TATA
007A
00D8 8080 MRK_LST ADR
0000
00DC 8084 IF cond:0 mask:00FFFFFF test:00353535
0000
FFFF
O0FF
3535
0035
002A
00EA 8090 EXEC_MSG_DEV addr:75 term:0 rply:1 time out:0014
rply Ing:32
cmd_1ng:14 [A simple text block]
8075
0014
1432
2041
6973
706D
656C
7420
7865
2074
6C62
636F
006B
0106 8091 RESUME_MSG DEV
0000
010A 8102 GEN_DEMAND pattern:C8
0o0cCs
010E 8083 END_OF SUBLIST
0000
END IF
0112 8083 END OF_ SUBLIST
0000
0116 2020 CASE test val:00202020
0020
0014
011C 8082 LD_TEST VAL add mod:0F ws:2 addr:00717171
800F
7171
0071
0124 8080 MRK LST_ADR
0000
0128 8083 END_OF_SUBLIST
0000
012C 3030 CASE test_wval:00303030
0030
0000
0132 8082 LD_TEST VAL add mod:0F ws:2 addr:002B2B2B

82

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

013A

013E

0142

0146

800F
2B2B
002B
8080
0000

8083

0000

8081
0000
8000
0000

MRK LST ADR
END OF SUBLIST

END CASE
END OF LIST

HALT

&3

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

3.5.2 KSC_bdcast_trigger

API Library

Syntax

int KSC_bdcast_trigger (struct ksc_list *list_base);

Purpose

This adds a Broadcast Trigger instruction to the passed list.

Description

This routine adds the Broadcast Trigger instruction to the end of the list defined by list base.

Parameters

Parameter Name

Direction

Description

list base

Input

Used by all of the List Generation routines. It is

created by calling KSC init_list.

Return Values

The most common error codes are listed here. For a comprehensive list, please
refer to the Error Codes section of this manual.

KSC_SUCCESS
KSC_NOLISTMEM

Normal, successful return.
Not enough list memory for this instruction.

84

Windows 2000 Device Driver/API

2962 PCI Grand Interconnect

3.5.3 KSC_block_rw

API Library

Syntax

int KSC_block rw (struct ksc_list *list_base

int abort,

int word_sz,

int acc_mod,

int ch_addr,

int addr mod,
int rw,

int it_cmd,

int address,

int trans_count);

Purpose

This routine adds a Block Read/Write instruction to the passed list.

Description
This routine will insert a Block Read/Write VXI/VME instruction at the end of the passed list given by
list base.
Parameters
Parameter Name Direction Description
list base Tnput Use_d by all of ?he _List Generation routines. It is created by
- calling KSC init_list.
abort input Abort Disable flag. Set this to one of ABORT (regular
abort) or ABORT D (disable the abort).
word sz input Word size. Set this to one of WS8, WS16, or WS32.
ace mod input Access mode. Set this to one of INCADR, DECADR, or
- RETADR.
. Chassis address. Set this to a valid chassis address number
ch_addr input (0-127).
addr mod input Access mode. Set this to one of INCADR, DECADR, or
- RETADR.
. Read/Write mode. Set this to the type of operation to be
W mnput performed, READ for a read, or WRITE for a write.
VXI bus command or slot-0 command. Set this to one of
it cmd nput INTERNAL for a slot-0 command or EXTERNAL for a bus
command.
address input A 32 bit VXI address.
trans_count input 32-bit transfer count.

85

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

Return Values

The most common error codes are listed here. For a comprehensive list, please
refer to the Error Codes section of this manual.

KSC SUCCESS Normal, successful return.
KSC NOLISTMEM Not enough list memory for this instruction.

86

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

3.5.4 KSC_dump_list

API Library

Syntax

int KSC dump list (mem,
int size,
int dump);

Purpose

This routine displays an already built list in a readable format.

Description

This routine will display an already built list stored in memory. The list should end with a HALT

instruction.

The display will give for each instruction its location (as a byte offset), instruction code, and the actual
instruction and data. If the data value is set to a non-zero value, you will also receive each additional word

of data for the instruction.

IF and CASE blocks will be indented accordingly. Currently, no nesting of CASE blocks is supported, and

up to 10 nested IF blocks are supported.

If the routine encounters an invalid opcode, it will be displayed and the routine will continue, attempting to
parse the next word as an opcode.

Parameters

Parameter Name

Direction

Description

mem

Input

This should be a pointer to the start of the list to be displayed.

size

input

This is set to the maximum size of the buffer, in bytes. The
routine will display all bytes up to and including mem+size bytes.
If size is specified as zero, the routine will display all instructions
up to a HALT instruction.

dump

input

This is a flag used to set the display format for the nstruction Iist.
If set to a value of zero, the display will only show the beginning
of each command. If set to any other value, the display will also
include all additional words of data for each command.

Return Values

The most common error codes are listed here. For a comprehensive list, please
refer to the Error Codes section of this manual.

KSC_SUCCESS Normal, successful return.

&7

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.5.5 KSC_end_list

Syntax
int KSC_end _list(struct ksc_list *list_base);

Purpose
This will add an EOL (End of List) instruction to the list.

Description
This routine will insert an End of List (EOL) instruction at the end of the passed list given by list_base.

Parameters
Parameter Name Direction Description
list base Tput Used by all of the List .Gfene.ration routines. It is
-~ created by calling KSC init list.

Return Values
The most common error codes are listed here. For a comprehensive list, please
refer to the Error Codes section of this manual.

KSC SUCCESS Normal, successful return.
KSC NOLISTMEM Not enough list memory for this instruction.

88

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.5.6 KSC_finish

Syntax

int KSC_finish(struct ksc_list *list base);

Purpose
End the creation of a list and free allocated list building resources.

Description
This routine should be called at the completion of creating a list. It will check to insure that all IF and
CASE blocks are properly completed.

A halt instruction is automatically added to the end of the list and the list_base memory is then released
back to the system. You cannot use the list_base value after calling this routine.

Parameters
Parameter Name Direction Description
list base Tput Useq by all qf 'thelList Generation routines. It is created by
- calling KSC _init list.

Return Values
The most common error codes are listed here. For a comprehensive list, please
refer to the Error Codes section of this manual.

KSC SUCCESS Normal, successful return.
KSC NOLISTMEM Not enough list memory for this instruction.

&9

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.5.7 KSC_gen_demand

Syntax

int KSC_gen_demand(struct ksc_list *list base,
int pattern);

Purpose

This places a Generate Demand instruction into the list.

Description
This routine will insert a Generate Demand instruction at the end of the passed list given by list base.

Parameters
Parameter Name Direction Description
list base Tnput Usgd by all of ’Fhe ‘List Generation routines. It is created by
— calling KSC init list.
pattern Input Demand pattern value (0-255).

Return Values
The most common error codes are listed here. For a comprehensive list, please
refer to the Error Codes section of this manual.

KSC_SUCCESS Normal, successful return.
KSC_NOLISTMEM Not enough list memory for this instruction.

90

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

3.5.8 KSC_init_list

APIT Library

Syntax

int KSC_init_list (*mem_base,

int size,

struct ksc_list *list base);

Purpose

Prepare allocated memory for list generation.

Description

This routine must be called before using any of the other list generating routines. It will allocate a structure
of type ksc_list, initialize it, and then return its location back in list base. You will need this value for calls
to any of the other list generating functions.

You may work on more than one list at a time. Each list will have its own list_base value.

At the end of creating a list, you must call KSC_finish to cleanup the list and remove the allocated structure

from memory.

Parameters
Parameter Name | Direction Description
mem base Tnput Tllis is a po.inter to the start of memory where you want the
- list to be built. The memory must already be allocated.
. This is the size, in bytes, of the allocated memory starting at
size Input
mem_base.
list base Tnput UseFi by all of ‘Fhe .List Generation routines. It is created by
- calling KSC init_list.

Return Values

The most common error codes are listed here. For a comprehensive list, please
refer to the Error Codes section of this manual.

KSC_SUCCESS
KSC BAD_ARD

Normal, successful return.
Bad arguments passed.

KSC_NOLISTMEM Not enough list memory for this instruction.

91

Windows 2000 Device Driver/API

2962 PCI Grand Interconnect

3.5.9 KSC_inline_rw

API Library

Syntax

int KSC_inline_rw (struct ksc_list *list base
int abort,
int word_sz,

int acc_mod,
it ch addr,
int addr_mod,
int rw,

int it cmd,
int address);

Purpose

This places an Inline Read/Write VXI/VME instruction into the list.

Description
This routine will insert an Inline Read/Write VXI/VME instruction at the end of the passed list given by
list base.
Parameters
Parameter Name Direction Description
list base Tnput Use.d by all of t.he List Generation routines. It is created by
- calling KSC _init_list.
bor . Abort Disable flag. Set this to one of ABORT (regular
abort mput abort) or ABORT D (disable the abort).
word sz input Word size. Set this to one of WSS, WS16, or WS32.
ace mod input Access mode. Set this to one of INCADR, DECADR, or
- RETADR.
. Chassis address. Set this to a valid chassis address number
ch_addr input (0-127).
addr mod input Access mode. Set this to one of INCADR, DECADR, or
- RETADR.
. Read/Write mode. Set this to the type of operation to be
™ tnput performed, READ for a read, or WRITE for a write.
VXI bus command or slot-0 command. Set this to one of
it_cmd input INTERNAL for a slot-0 command or EXTERNAL for a bus
command.
address input A 32 bit VXI address.

Return Values

The most common error codes are listed here. For a comprehensive list, please
refer to the Error Codes section of this manual.

92

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

KSC_SUCCESS Normal, successful return.
KSC NOLISTMEM Not enough list memory for this instruction.

93

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

3.5.10 KSC_inline_w

API Library

Syntax

int KSC_inline_w (struct ksc_list *list base,

it abort,

int word_sz,
int acc_mod,
int ch_addr,
int addr_mod,
nt rw,

int it _cmd,
int address,
int data);

Purpose

This places an Inline Write VXI/VME instruction into the list.

Description
This routine will insert an Inline Write VXI/VME instruction at the end of the passed list given by
list_base.
Parameters
Parameter Name |- Direction Description
list base Tnput Usgd by all Qf .the. List Generation routines. It is created by
- calling KSC_init _list.
bort ot Abort Disable flag. Set this to one of ABORT (regular abort)
abor 1apu or ABORT D (disable the abort).
word_sz input Word size. Set this to one of WS8, WS16, or WS32.
ace mod input Access mode. Set this to one of INCADR, DECADR, or
- RETADR.
. Chassis address. Set this to a valid chassis address number (0-
ch_addr input 127).
addr mod input Access mode. Set this to one of INCADR, DECADR, or
- RETADR.
. Read/Write mode. Set this to the type of operation to be
™ mput performed, READ for a read, or WRITE for a write.
VXI bus command or slot-0 command. Set this to one of
it_cmd input INTERNAL for a slot-0 command or EXTERNAL for a bus
command.
address input A 32 bit VXTI address.
data input The actual data to be written.

94

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

Return Values

The most common error codes are listed here. For a comprehensive list, please
refer to the Error Codes section of this manual.

KSC SUCCESS Normal, successful return.
KSC NOLISTMEM Not enough list memory for this instruction.

95

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.5.11 KSC_slave_trigger

Syntax
int KSC_slave_trigger (struct ksc_list *list_base,
it ch_addr,
int ttl_trig,
int ecl trig,
int fp_trig,
int list,
int timst);

Purpose
This places an Addressed Slave Trigger instruction into the list.

Description
This routine will insert an Addressed Slave Trigger instruction at the end of the passed list given by
list base.

Parameters
Parameter Name Direction Description
list base Tnput Used by all Qf the Li;t .Ge‘neration routines. It is
- created by calling KSC init_list.
ch_addr input Chassis address. Valid values are 0-127.
ttl trig input Generate VXI TTL trigger line.
ecl trig input Generate VXI ECL trigger line.
fp_trig input Generate V160 front panel trigger.
list input Trigger list execution,
timst input Clear time stamp counter.

Return Values
The most common error codes are listed here. For a comprehensive list, please
refer to the Error Codes section of this manual.

KSC_SUCCESS Normal, successful return.
KSC_NOLISTMEM Not enough list memory for this instruction,

96

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.6 VXI Routines

The KSC API (Application Programming Interface) provides all of the functions of the 2962 to the user by
actually do the QIO calls to the Windows NT or 2000 device driver. The users are encouraged to use these
routines to limit the changes resulting from changes in the Driver QIO interface and the Windows operating
system (Note: Many of the KSC API calls are available on Digital UNIX).

Besides providing the basic functioning the 2962, the KSCAPI also supports the building of command lists.
These command lists are for both VXI and CAMAC chassis. The CAMAC library calls these routines to
build its lists and to function the 2962. The next chapter describes the KineticSystem CAMAC Application
Library.

Programmers that work in “C”, may also use command list generation macros written in “C”. These
macros generate runtime code that initializes a command list. The use of these macros or the command list
generation routines are encouraged in the event there are changes to the command list instructions.

3.6.1 APl Usage

The API is implemented as a set of linkable routines in a linkable object library, giapilib. All of the
routines are prototyped in the ksc_api.h file. This file may be included using the following in a normal “C”
and programs:

#include <ksc_handle.h>
#include <ksc_api.h>

3.6.2 API and Driver Errors

The API and driver error codes are described in a later chapter along with their recovery procedures. By
Windows convention, all of the interface routines return an odd value if the call was successful and even if
the call was not. The error returned by the Windows kernel is returned in the status argument of the handle.
This status argument is only valid if the interface returns an even error code. The value of the status entry
may be from the device driver or from Windows. The user should also reference Windows error codes.
All of the error codes are defined in the kerrors.h header file. The user should reference the KSC 2962
Hardware documentation for the most of the device driver errors.

The routine KSC_print_symbolic will translate and print the error code to the symbolic English description
to the standard output. Additional error information may also be displayed by using KSC lasterror, which
will return the last known API routine and driver error status.

3.6.3 API Handle

The APT allocates a handle and returns its address to the caller when the user calls the KSC Init interface.
All particulars of the API are then maintained within this allocated region. The definition of this handle is
maintained in the ksc_handle.h file. The handle is passed to all of the routines (except for the KSC init
routine). The actual byte count completed for a request is returned in the handle element: “xfsize”. The
device driver status is returned in the handle element: “status”. The status should be examined along with
the return value from the interface routine. The status may be either a status from the device driver or
another error from Windows NT. The routine KSC print_symbolic will translate and print the returned

97

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

English status code to standard output. All of the API routines return a 32-bit integer for status similar to
the Windows NT system services. If the returned status is odd, then the call is completely successfully.

3.6.4 Command List Generation

There are a set of macros that are provided for the user to create lists which can be executed by the Grand
Interconmect Host adapter or a slot zero crate controller. These are documented in the command list macros
chapter. Additionally, the user may use the runtime routines to initialize a command list. The runtime
routines will function in any language while the macros are only valid for “C” programmers.

3.6.5 Partition Contention

The Grand Interconnect device driver allows the user to load any of the partitions. The user must use
mutexes, semaphore, or locks to protect the use of the partitions by multiple threads or processes. The
KSC _loadgo always uses partition one and will both load the command partition and execute it
autonomously.

3.6.6 Program TEST_API

The KGI_EXAMPLES:TEST API program provides a menu to execute many of the KSC routines.
Originally its purpose was to test the various KSC routines. It can also be used to control events for

debugging application programs and testing hardware configurations. The logical name kgi _examples is
defined by the KGI_STARTUP.COM command file.

The menu presented on the screen/window is:

KSC Application Library Test Utility

1. KSC init 2, KSC set partitions

3. KSC_display partitions 4. KSC diag

5. KSC load cmdlist 6. KSC_read cmdlist

7. KSC exec rlist 8. KSC exec wlist

9. KSC read counters 10. KSC reset

11. KSC demand read 12.

13, Init command list (read) 14, KSC_loadgo (write)
15. Init command list (write) 16. KSC_loadgo (read)
17. KSC get failure 18. Change Crate number
19. KSC_v160_loademd (& build) 20. KSC_v160 trigger
21. KSC v160 reademd 22, KSC v160_readbuf
23. KSC v160 readreg 24, KSC_exec_clocked list
25. KSC _v160 writereg 26, KSC read multibuf
27. KSC mbuf done 28.

99. Exit

Enter selection [1]:

Always execute selection 1 before any other.

As an example, to generate a demand for testing a user application program that expects to see a demand id
of zero in Chassis one (user program must have registered for this demand id from the chassis using
KSC enable_demand), execute:

#1 To open initialize the library
#19 To place a command list into the target V160 (default is chassis 1, see option 18)

98

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

#20 To actually trigger the list in the V160

99

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.6.7 KSC_demand_read

Syntax

int KSC_demand _read (struct KSC_handle *handle,
int demand _list[],
int demand _list_size,
int *demands _found);

Purpose
Post a read for one or more demand commands.

Description

The driver allows the ability to receive demand messages from the highway and list interrupts while the
2962 is executing a command list. These demands are stored in a demand FIFO and they are dequeued
with this read. If there are no demands currently pending, the calling thread will be suspended until such
time that a demand message or a list interrupt is processed.

In the event of a device reset this routine will return with status indicating that demand messages might
have been lost (those that might have been in the FIFO when the reset was executed).

The host “in list” interrupts can be distinguished from the demand messages from the 2962 by a non-zero
upper word. The content of the lower demand message is as it was read from the 2962. The user should
reference the 2962 manual for this information.

There is no included support to provide access control for different processes using this call. The Demand
Process uses this call to acquire the demands from the driver. This call is provided for users who wish to
develop their own demand servicing applications.

Parameters
Parameter Name Direction Description
handl Input Used by all device driver access routines. Returned by
1andie P KSC_INIT.
demand_list Tput A long word array to receive the demand interrupts.

Must be long word aligned.

demand list size Input Size in bytes of the demand list array.

Represents the location of an integer that will be set to
the number of demands actually transferred.

demands found Output

Return Values

100

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

3.6.8 KSC_display_partitions

API Library

Syntax
int KSC_display_partitions(struct KSC_handle *handle,
struct KSC_driver_ptable *partition_table);

Purpose
Read command list partition table of the KSC 2962.

Description

This call will call the kscgi device driver to return the current partition table of the KSC 2962. The
KSC_driver_ptable structure contains both the starting address and the length of each partition in bytes.

Parameters
Parameter Name Direction Description
handle Tnput Used by all device driver access routines. Returned
by KSC_INIT.
o Returns the current partition table of the KSC 2962
partition_table Tnput as maintained by the KSCGI device driver.

Return Values

KSC HANDLE Handle is invalid.
KSC NOTOPEN Handle has not been initialized.

KSC_IOCTL Error from device driver or Windows NT. Examine

status in KSC_handle.

101

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.6.9 KSC_enable_demand

Syntax
int KSC_enable_demand(struct KSC_handle *handle,
int Chassis,
int demand _id,
int demand type,
long *AstAdr,
long * AstPrm);

Purpose
Enable reception of a single demand from a particular chassis.

Description

This routine Enables Demands by sending a message to the Demand Process requesting notification when
the particular demand id for the indicated chassis occurs. The Demand Process must be running or this
process will wait forever.

If a new Demand Process is started, any processes that have registered for a demand are forced to exit, All
processes that desire to connect for Demands must be running in the same group as the Demand Process as
a shared group global section is used between the user process and the demand process. A lock is captured
when the first demand enable is called which is used by the demand process to exit any processes that may
have enabled demands using the old demand region.

This routine communicates with the demand process using mailboxes. If the user process fails to empty its
demand mailbox in a timely fashion, the demand process will disconnect the user’s process for any
demands that the process may have registered for.

For one shot demands, this routine may be called multiple times to re-enable the one shot. Any process that
registers for a demand supersedes any previous process for the particular demand id for a particular chassis.

Parameters
Parameter Name | = Direction Description
handle Tnput Used by all device driver access routines. Returned by
KSC_INIT.
. Chassis number that the demand is expected from. Chassis
Chassis Input

number zero is the host grand interconnect adapter.

This is the ID of the demand. For command lists that
generate the demand, this is the demand id that is coded into
the instruction. If the demand is a demand from a VXI crate
demand id Input (V160), the demand id is the encoding of the IRQ or multi-
buffer bit. If the demand is a demand from a CAMAC
chassis (2952), the demand id is the encoding of the LAM
lines or the multi-buffer bit.

The demands can either be set up to generate a single one
shot when the demand occurs or a reoccurring demand. A

demand type Input

102

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

Parameter Name | - Direction Description

value of one (1) is a single one shot and a value of two (2) is
a repeating demand.

AST routine to be called when the demand occurs. The AST
parameter is the demand id and the chassis that generated the

AstAdr Input demand passed by reference. The demand id is in the lower
sixteen bits and the chassis is in the upper sixteen bits.
AstPrm Input A pointer to a user defined value passed along to the Ast

Routine.

Return Values

KSC_CHASSIS Invalid user chassis number entered.

KSC NOTCEG All demands that are to be enabled must be configured.

- See the Demand Process chapter.

The system allows for a maximum number of demands
that single process can connect for. The caller has
exceeded this value. Examine the KSC handle.h for this
maximum,

KSC_DMDTBLFULL

103

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

3.6.10 KSC_exec_rlist

APIT Library

Syntax

it KSC_exec_rlist (struct KSC_handle *handle,
int partition,
byte buil],
it buffer size):

Purpose

Execute a read command list.

Description

The command list currently stored in the KSC 2962 will be executed. The user-supplied buffer will receive
any data that is sourced by the KSC 2962. If the user buffer is too large, or the KSC 2962 fails to source
sufficient data, the request will only complete via a device timeout or an embedded command list inferrupt.
If the command list contains a list interrupt, the driver will consider such an interrupt as a completion of the
list. The kscgi device driver always attempts to store a list completion interrupt at the end of the loaded

command list partition.

Parameters
Parameter Name Direction Description
handle Tput Used by all device driver access routines. Returned by
KSC_INIT.
o Command list partition within the KSC 2060 that is to be
partition Input
executed.
buf Input Data to be 1'emm§d to user as geqera_ted by the. ;xecution
of the command list stored in the indicated partition.
buffer size Input Total size of the buffer in bytes.

Return Values

KSC HANDLE Handle is invalid.
KSC_NOTOPEN Handle has not been initialized.
Error from device driver or Windows NT. Examine status in

KSC_READERR KSC_handle.

104

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.6.11 KSC_exec_wilist

Syntax
it KSC_exec_wlist (struct KSC_handle *handle,
word buff],
int buffer_size,
int *used_size,
int partition);
Purpose

Executes a write command list.

Description

This call will request the execution of the command list that has already been loaded into the command list
partition of the KSC 2962. The actual completion of the request depends on whether the user supplied the
correct number of bytes for the KSC 2962. A command list may require more data than what was provided
by the user, however, the DMA will complete regardless. If the user embedded a command list interrupt,
this will terminate the command list.

Parameters

Parameter Name Direction Description

Used by all device driver access routines. Returned by

handle Input KSC INIT
buf Input Data source for the command st that was loaded in the

P indicated partition.
buffer size Input Size of the user supplied buffer.

. The returned number of bytes that requested by the

used_size Output KSC 2962,
artition Input The command list partition that contains the command

part P list that is to be executed.

Return Values
KSC HANDLE Handle is invalid.
KSC_NOTOPEN Handle has not been initialized.
Error from device driver or Windows NT. Examine
KSC_READERR status in KSC handle.

105

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

3.6.12 KSC_get_failure

API Library

Syntax

int KSC_get_failure (struct KSC_handle *handle,

mt partition,

struct KSC_error_exc failure_array[]);

Purpose

Executes a write command list.

Description

This call will request the execution of the command list that has already been loaded into the command list
partition of the KSC 2962. The actual completion of the request depends on whether the user supplied the
correct number of bytes for the KSC 2962. A command list may require more data than what was provided
by the user, however, the DMA will complete regardless. If the user embedded a command list interrupt,
this will terminate the command list.

Parameters
Parameter Name Direction Description

handle Tnput Used by all device driver access routines. Returned
by KSC INIT.
Partition to return the last failure. This should be

partition Tput the same as the partiion passed to the
KSC_exec_list, KSC_exec rlist, or
KSC _exec wlist.
An array to receive the last failure that the grand
interconnect device driver encountered. The

. following are returned in the eight “ints” at the time

failure array Input

of the I/O completion. The user should reference
the KSC 2962 device manual for a description of
the bits contained in the device registers.

[0]- CSR (Control and Status Register)

[1]- ESR (Error Status Register)

[3]- Word count low (from last block transfer in list)
[4]- Word count high (from last block transfer in list)
[5]- CMA (Command Memory Address)

[6]- CSR (At start of list execution)

[7]- Actual byte count transferred on last list execution.

Return Values
KSC HANDLE

KSC_NOTOPEN
KSC_READERR

Handle is invalid.
Handle has not been initialized.
Error from device driver or Windows NT. Examine status

106

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

in KSC handle.

Driver error or Windows NT error. Examine status in
KSC_IOCTL KSC handle,

KSC PARTIONERR Desired partition number is not valid.

107

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

3.6.13 KSC_init

API Library

Syntax

int KSC_init (struct KSC_handle *handle,

it ctrl);

Purpose

Initialize driver access routines.

Description

This routine initializes the application library. The KSC 2962 devices are opened and a pointer to the
KSC_handle is returned to the caller for future calls to the API. The controller number is used to open the
“/dev/ks<ctrl>0” device. Upon a successful call, the KSC_handle->ksa field will be filled in with the
device descriptor for the device.

Parameters
Parameter Name Direction Description
handle Tnput Used by all device driver access routines.
Returned by KSC_INIT.
Controller number of the KSC 2962 Grand
ctrl Input

Interconnect (range: 0-4).

Return Values
KSC ALLOC

KSC_OPENERROR
KSC_SUCCESS

Unable to allocate the KSC handle.

Unable to open KSC devices. The status of the
Windows NT “open” call is returned in handle->status.
Successful completion.

108

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.6.14 KSC_lasterror

Syntax

int KSC_lasterror (struct KSC_handle *handle,
long api_status,
long sys_status);

Purpose
Display the last known API and Driver error conditions.

Description .
This routine will return the most recent API and Driver status information. The API status is the last status
received from any non-listbuilding API routine. The driver status information is from actual device QIO |
calls or from Windows NT.

Parameters
Parameter Name Direction Description
handle Tnput Used by all device driver access routines.

Returned by KSC_INIT.

api_status Input Last status returned by the API routines.

Last status returned from Windows NT or the
device driver.

Sys_status Input

Return Values

KSC_HANDLE Handle not initialized. Need to call KSC _init first before

using this function.

109

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.6.15 KSC_loadgo

Syntax

int KSC_loadgo (struct KSC_handle *handle,
word bufl],
int buf size,
mnt direction);

Purpose

Load a command list and execute it.

Description

This entry provides an ability for the user to both load a command list partition and then execute the loaded
command list. The user indicates the direction of the data transfer. This routine simply calls the command
partition load function and then either the read or write command list function. The completion of the
command list is identical to that for the execute read or write command lists.

Because this routine is completed in a single operation, there is no need to control access to a particular
partition. This routine always uses command list partition one of the Grand Interconnect host adapter.

Parameters
Parameter Name Direction Description
handle Tnput Used by all device driver access routines. Returned by
KSC_INIT.

Source or sink of the data for the command list loaded
into the indicate partition. The buffer contains both the
command list and the data buffer. The buffer contains
buf Input in the first “int” the size of the command list in bytes,
followed by the command list and the data buffer. The
command list macros provide a convenient way to
create this combined buffer.

buf size Input Size of user buffer.

Direction of the transfer (0= user sources the data, 1~
2962 sources the data for the command list).

direction Input

Return Values

KSC_HANDLE Handle is invalid.
KSC NOTOPEN Handle has not been initialized.
KSC READERR Error from device driver or Windows NT. Examine

status in KSC handle.
KSC_PARTIONERR Desired partition number is not valid.

110

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.6.16 KSC_load_cmdlist

Syntax

int KSC_load cmdlist (struct KSC_handle *handle,
int partition,
int list[],
int list_len);

Purpose

Load a KSC 2962 command list into a partition.

Description

Before a command list can be executed it must be loaded into the command list memory of the KSC 2962.
The programmer should reference the KSC 2962 documentation with regard to the actual content of the
command list.

Parameters
Parameter Name Direction Description
handle Input Used by all device driver access routines.
Returned by KSC_INIT.
. Which partition the command list should be loaded
partition Input into.
st Input Corpmand list to be loaded into the indicated
partition of the KSC 2962.
Length of the command list to be loaded into the
list len Tnput indicated partition of the KSC 2962. The length of
- the list must be less than the length of the indicated
partition.
Return Values
KSC HANDLE Handle is invalid.
KSC NOTOPEN Handle has not been initialized.

Error from device driver or Windows NT. Examine status
in KSC handle.

KSC I0CTL Driver error or Windows NT error. Examine status in
- KSC handle.

KSC_PARTIONERR Desired partition number is not valid.

KSC_READERR

111

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.6.17 KSC_print_symbolic

Syntax
mt KSC_print_symbolic (int status);

Purpose
Convert and print symbolic text for a status code.

Description
This routine calls the sys$getmsg and prints to standard output the symbolic description of the status code.
The user must have linked the message file: kgdriver_msg from the library.

Parameters

Parameter Name Direction Description

Windows NT, API, or driver status to be
converted to text,

status Input

Return Values

112

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.6.18 KSC_read_cmdlist

Syntax

int KSC_read_cmdlist (struct KSC_handle *handle,

int partition,
int list[],
int list_len);

Purpose

Load a KSC 2962 command list into a partition.

Description

Before a command list can be executed it must be loaded into the command list memory of the KSC 2962.
The programmer should reference the KSC 2962 documentation with regard to the actual content of the

commiand list.

Parameters

Parameter Name Direction

Description

handle

Input

Used by all device driver access routines.
Returned by KSC_INIT.

partition

Input

The desired command list partition to read the
contents.

list

Input

Buffer to receive the current contents of the
indicated command list partition. The number of
bytes returned depends on the list size passed and
the current size of the requested partition.

list_len

Input

list_len bounds the number command list words
from the command list memory that can be
returned from the partition. If the size of the
partition currently is larger than user’s buffer, only
list_len bytes will be returned along with a
informational status indicating that the user’s
buffer was too small. The actual size is returned in
xsize in the KSC_handle.

Return Values
KSC HANDLE
KSC NOTOPEN

KSC_READERR
KSC_PARTIONERR

Handle is invalid.

Handle has not been initialized.

Error from device driver or Windows NT. Examine
status in KSC_handle.

Desired partition number is not valid.

113

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.6.19 KSC_read_counters

Syntax
mt KSC_read_counters(struct KSC_handle *handle,
struct KSC_counters_gi *Counters);

Purpose
Return Driver statistic counters.

Description
This routines returns the current counters from the 2962 device driver. These may be used for user written
diagnostic programs.

Parameters
Parameter Name | Direction Description
handle Input Used by all device driver access routines. Returned
by KSC INIT.
Buffer to receive the counters. The array contains
Counters Input the following in long word integers in order as
follows:

Number of timeouts

Number of writes

Number of reads

Number of command list loads
Number of interrupts

Number of list_interrupts
Number of demand_interrupts

Return Values

KSC_HANDLE Handle is invalid.

114

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.6.20 KSC_set_partitions

Syntax
int KSC_set_partitions (struct KSC_handle *handle,
struct KSC_partition_table *partition_table);

Purpose
Load partition boundaries of the KSC 2962.

Description

This routine calls the device driver to partition the 32K command memory of the KSC 2962. The
command memory may be divided in up to eight different partitions. Each of the partitions is assigned a
pair of devices. Any of the partitions may be from zero to the remaining size of the command list memory.
Partitions cannot be overlapped or concatenated..

Parameters

Parameter Name Direction Description

Used by all device driver access routines. Returned
by KSC INIT.

The desired partitioning of the command list
memory of the 2962. This table contains the
starting address in bytes for each of the partitions.
A zero termrinates the table. Specifying all zeroes
will result in the last partition being allocated all of
the 32KB of the conunand list memory. To allocate
all of the command list memory to the first
partition, specify (0,0x8000,0,0,0,0,0,0).

handle Input

partition_table Input

Return Values

KSC HANDLE Handle is invalid.
KSC NOTOPEN Handle has not been initialized.
KSC IOCTL Driver error or Windows NT error. Examine status in

KSC handle.

115

Windows 2000 Device Driver/API

2962 PCI Grand Interconnect

3.6.21 KSC_set_timeouts

API Library

Syntax

int KSC_set_timeouts (struct KSC_handle *handle,

long time_array[]);

Purpose

Set partition command list timeout values.

Description

The device driver requires that all lists complete within a specific time limit. This value can be specified
for each partition. When the device driver is loaded a default value is used for each partition.

Parameters
Parameter Name Direction Description
handle Tnput Used by all device driver access routines. Returned
by KSC _INIT.
This array contains in seconds the timeout for each
. partition. The minimum value is two seconds as
time_array Input

Windows NT driver timeout routines are called only
at one-second intervals plus or minus one second.

Return Values
KSC HANDLE

KSC_NOTOPEN

Handle is invalid.

Handle has not been initialized.

116

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.6.22 KSC_v160_loadcmd

Syntax
int KSC_v160_loademd (struct KSC handle *handle,
int partition,
int cmd_list[],
int list len,
int v160,
mt list addr);
Purpose

This routine loads the user passed command list into the command V160 VXI slot zero controller.

Description

This routine loads the user passed command list into the command V160 VXI slot zero controller. This is
done by first loading a command list into the host Grand Interconnect (ksc2962) that will set up the V160,
and then writing the command list into the V160. The CSR of the V160 is read and modified for loading
the list.

All command lists that are loaded into the V160 must be set for 32-bit address space.

Parameters
Parameter Name Direction Description
handle Input Used by all device driver access routines.
Returned by KSC INIT.
partition Input Which host partition to use.
cmd st Input Command for V160.
list len Input Length of list in bytes.
v160 Input VXI crate address.
list addr Input Word address where to load.

Return Values

KSC_HANDLE Handle is invalid.

117

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.6.23 KSC_v160_readbuf

Syntax
it KSC_v160_readbuf (struct KSC_handle *handle,
int partition,
int cmd list[],
int list len,
int v160,
int list addr);

Purpose
This routine loads the user passed command list into the command V160 VXI slot zero controller.

Description

This routine loads the user passed command list into the command V160 VXI slot zero controller. This is
done by first loading a command list into the host Grand Interconnect (ksc2962) that will set up the V160,
and then writing the command list into the V160. The CSR of the V160 is read and modified for loading
the list.

All command lists that are loaded into the V160 must be set for 32-bit address space.

Parameters
Parameter Name Direction Description
handle Input Used by all device driver access routines.
Returned by KSC INIT.
partition Input Which host partition to use.
cmd_list Input Command for V160.
list len Input Length of list in bytes.
v160 Input VXI crate address.
list_addr Input Word address where to start read.

Return Values
KSC HANDLE Handle is invalid.

118

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.6.24 KSC_v160_readcmd

Syntax
int KSC_v160_reademd (struct KSC_handle *handle,
int partition,
int cmd_list[],
int list_len,
int v160,
int list_addr);

Purpose
This routine read the command list from the V160 into the user passed buffer starting at the passed initial
address.

Description

This routine read the command list from the V160 into the user passed buffer starting at the passed initial
address. This is done by first loading a command list into the host grand interconnect (ksc2962 or
ksc29062) that will set up the V160, and then reading the command list from the V160.

Parameters
Parameter Name: | :Direction Description
handle Tnput Used by all device driver access routines. Returned
by KSC_INIT.

partition Input Which host partition to use.

cmd list Input Command for V160.

list len Input Length of list in bytes.

v160 Input VXI crate address.

list_addr Input Word address where to start read.

Return Values
KSC HANDLE Handle is invalid.

119

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.6.25 KSC_v160_readreg

Syntax
int KSC_v160_reademd (struct KSC _handle *handle,
int partition,
int v160,
int reg_offset,
int reg_value);

Purpose
This routine reads the V160 register at the offset passed.

Description
This routine reads the V160 register at the offset passed. The user should use the offsets defined in
“cmdlist.h”,

This routine builds a simple list to read the desired register, loads it into the KSC2962 command memory,
and executes it. The user should see the KSC 2962 hardware documentation for the device register
documentation.

Parameters
Parameter Name | Direction Description
handle Tnput Used by all device driver access routines.
Returned by KSC INIT.
partition Input Which host partition to use.
v160 Input VXI crate address.
reg offset Input Word address where to load.
reg value Input Value from register.

Return Values
KSC HANDLE Handle is invalid.

120

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.6.26 KSC_v160_trigger

Syntax

int KSC_v160_trigger (struct KSC handle *handle,
int v160chassis,
int partition,
int v160cmdaddr);

Purpose
This routine reads the V160 register at the offset passed.

Description
This routine reads the V160 register at the offset passed. The user should use the offsets defined in
“cmdlist.h”.

This routine builds a simple list to read the desired register, loads it into the KSC2962 command memory,
and executes it. The user should see the KSC 2962 hardware documentation for the device register
documentation.

Parameters
Parameter Name Direction Description
handle Input Used by all device driver access routines.
Returned by KSC INIT.
v160chassis Input Chassis address.
partition Input Which host partition to use.
v160cmdaddr Input Command address.

Return Values
KSC HANDLE Handle is invalid

121

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

API Library

3.6.27 KSC_v160_writereg

Syntax
int KSC_v160_writereg (struct KSC_handle *handle,
int partition,
int v160,
intreg offset,
it reg_value);

Purpose
This routine writes the V160 internal register at the offset passed.

Description

This routine writes the V160 internal register at the offset passed. The user should use the offsets defined
in “emdlisth”. This routine builds a command list using the passed parameters and calls KSC loadgo to
execute the list thereby writing the register in the V160. The user should consult the KSC 2962 hardware
manual for effects and documentation of the V160 device registers.

Parameters
Parameter Name Direction Description
handle Tnput Used by all device driver access routines.
Returned by KSC_INIT.
partition Input Which host partition to use.
v160 Input VXI crate address.
reg_offset Input Word address where to load.
reg_value Input Value to write to register.

Return Values
KSC HANDLE Handle is invalid.

122

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

CAMAC Command Line Utilities

4 CAMAC Command Line Utilities

This chapter describes the general-purpose CAMAC utilities available for simple testing. These utilities
may be called from a DOS prompt, a batch file, or from the WINDOWS icon. Features included in the
commands are single 24/16-bit CAMAC data transfers, control operations to the crate controller, and retarn
of the crate controller status. Using the commands allow the user to verify that a given CAMAC module
can be addressed, and that it is operating properly. In addition, it is a convenient way to become familiar
with how the module functions before developing application code.

4.1 Command Summary

Command parameters define what the utility will act upon. All parameters are optional as indicated by
brackets “[...]". The user will be prompted for any parameters that are not specified on the command line.

The following describes the execution of the utilities from the DOS prompt or a batch file with parameters.

4.1.1 CACTRL Utility

This utility does control functions to CAMAC chassis on the CAMAC Serial highway. CACRTL performs
a crate wide CAMAC control operation (i.e., Init, Clear, Set Inhibit, Clear Inhibit, Online).

The syntax for the CACTRL utility is:
CACTRL [/C=] [/INIT] [/CLEAR] [/SETINH] [/CLRINH] [/ONLINE]

Note - All parameters may be omitted or when specified may be entered in any order.

he crate (0 to 7). The default value is chassis one.
INIT Assert the init line in the CAMAC chassis

CLEAR Performs a CAMAC clear operation

SETINH Set the dataway inhibit line in the CAMAC chassis

CLRINH Clear the dataway inhibit line in the CAMAC chassis

ONLINE Put the chassis online

CACTRL Examples

Example 1:

In this example, the first CACTRL command specifies the crate number and performs a control operation
(crate online). The second CACTRL command will prompt the user for the crate number and sets the
inhibit bit in the crate controller. As a result of the inhibit bit being set the LED on the crate controller is
turned on and the inhibit dataway signal true.

CACTRL /ONLINE /C=3
CACTRL /SETINH

123

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

CAMAC Command Line Utilities

Example 2:

In this example, the first CACTRL command specifies the crate number and performs a control operation
(crate online). The second CACTRL command prompts for the crate number and sets the inhibit bit in the
crate controller. As a result of the inhibit bit being set the LED on the crate controller is turned on and the
inhibit data way signal true. The third CACTRL command prompts for the crate and performs a CAMAC
clear operation.

CACTRL /ONLINE /C=2

CACTRL /ONLINE /SETINH
CACTRL /CLEAR

4.1.2 CAM Utility

The CAM utility allows the user to do simple CAMAC operations. This utility should be used with caution
as it performs commands to the target crate without any regard to the current applications running on the
system. The syntax for the CAM utility is:

CAM [/C=] [/N=] [/A=] [/F=] [/DATA=]

Note - All parameters may be omitted or when specified may be entered in any order.

Qualifier Description

C Chassis number of the crate (0 to 7). The default value is chassis one.

N Station number within the CAMAC chassis of the module to be
selected.

A Sub address to be selected within the CAMAC module. The default
value is zero.

F The CAMAC function code to be performed to the device. The default
value is zero.

DATA Optional Write data if the function requires data. The user may indicate

hexadecimal by prepending a “X” to the value.

CAM executes a single 24-bit CAMAC data transfer. This command reads or writes 24 bits of data to or
from a CAMAC module.

CAM Examples

Example 1:

In this example, the first CAMAC command performs a read function, F(0), from sub-address zero, A(0),
of crate one, C(1) directed to slot 1, N(I). The second command also performs a read function from the
same slot and address, but the user will be prompted for the crate number. The third CAMAC command
will prompt the user for all parameters. The output for a read operation displays the data in both decimal
and hexadecimal format. Although the output is listed only once in the following example, it would
actually be produced by each of the read operations as they were executed.

CAM /C=1 /N=1/A=0 /F=0
CAM /N=1 /A=0 /F=0
CAM

Data returned from CAM24 in decimal = 32, in hex = 0x20

124

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

CAMAC Command Line Utilities

Example 2:
In this example, the first CAMAC command performs a write function, F(16), to sub-address zero, A(O),
with a value of 10 directed to crate 2, slot 3. The second command also performs a write function however

the data value is specified in hexadecimal format. The “x” is used to represent hex notation with a value
|l20|l.

CAM /C=2 /N=3 /A=0 /F=16 /DATA=32
CAM /C=2 /N=3 /A=0 /F=16 /DATA=x20

4.1.3 CCSTAT Utility

Displays the crate controller status (i.e., Inhibit status, L-SUM status, LAM register status, Crate Controller
Status register, and Error Status register). The first two values are displayed in decimal, the remaining
three values are in hexadecimal format. Refer to the crate controller manual for the meaning of the bits in
the crate controller registers.

CCSTAT [/C=]

Qualifier Deseription
C Chassis number of the crate (0 to 7). The default value is chassis one.

Example 1:
In this example, the first CCSTAT command specifies the crate number and displays all crate controller
status registers.

CCSTAT /C=1

Output -
Crate status for crate: 1
Inhibit Status =1
LSUM status =0
Lam Register (Box) = 0x40
Crate Controller Status Register = 0x 44
Error Status Register = 0x0

125

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

Resource Manager

5 Resource Manager

5.1 Resource Manager Functionality

The Grand Interconnect (GI) VXI Resource Manager (RM) configures all devices in GI nodes with the
KSC Model V160 GI-VXI Slot 0 Controller (hereafter called GI-VXI nodes). It fully complies with
revision 1.4 of the VXIbus specification and revision 1.0 of the MXTbus specification. It operates properly
with devices that comply with revisions 1.2, 1.3, or 1.4 of the VXIbus specification, particularly message-
based devices designed to the earlier revisions. Any GI-VXI node may be configured with any of the
following types of VXI devices:

e Static Configuration (SC) devices
e Dynamic Configuration (DC) devices
e VXI-MXI extenders with (or without) INTX

Non-VXI (pseudo-VXI and VME) devices and MXI A16 address windows are not supported in RM
version 2.0.

Systems integrators familiar with other VXI Slot 0 Controllers and their associated Resource Manager
software should note that the GI RM differs in only one major respect. The GI allows up to 126 distinct
nodes, and each VXI node can have 256 devices. The GI RM must configure all GI-VXI nodes, and to do
so it sequences through all possible nodes from 1 to 126 looking for V160s. Once found, the RM
procedure for that node is equivalent to the RM run on those other controllers.

The GI RM will normally be run once for all nodes during system initialization, which is usually within
seconds of power being applied to the VXI mainframes. However, there may be times when one or more
nodes may be subsequently powered off while others remain powered on. (If at least one node in a GI
system is powered off without backup power to its fiber-optic components, thus logically breaking the
fiber-optic loop, it will not be possible to communicate with any of the remaining nodes.) To allow this,
the RM can be run on a single node after its power has been restored, and the configuration data previously
recorded for that node alone will be replaced with the current data. Data for other nodes will not be
affected in this mode of operation.

It is important to note that the VXIbus specification requires a RM to be run exactly once after power-on or
system reset. Therefore, if it appears to be necessary to re-run RM on a particular node, either
SYSRESET* must be asserted in that node, or power to that node must be turned off momentarily. Failing
to follow this requirement may place some VXI devices in an indeterminate state.

The GI RM software is also provided in archive library (lib.a) format, so that the system integrator may
link the core RM with a portion of the data acquisition application. In this case, a call to the rmShell
function replaces the command-line invocation of the RM. A "C" language header file is provided and
contains the function prototype with which the RM call in an application must comply.

5.2 Resource Manager Files

The RM software and the RM input table files are copied to disk by the kit installation when the 2962
device driver is installed. The system integrator should verify that the RM executable, resman, has been
copied to disk, and that the Resman Tables directory contains the following files:

126

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

Resource Manager

1. gidevice.tbl
2. intcfg.tbl

3. mifnameid.tbl
4, model.tbl

5. trigutil.tbl

These are all plain comma delimited ASCII text files with one entry per line. Detailed information on these
files, and the resman.tbl output file, will be found in the File Formats section below. In the following
paragraphs, set-up comments for each of these files are provided in the (alphabetical) order in which the
files are listed above.

The device name file, gidevice.tbl, is optional; the RM will assign device names based on the hexadecimal
logical address (of the form "DEVICE_XX") unless a device's characteristics match one of the entries in
this file. This file is unique in that its fields may contain "wildcard" values that match any corresponding
device value. With this capability, for example, all the V160's can be given the same device name,
regardless of node number. System integrators can defer the modification of this file until unique device
names are to be assigned.

The interrupt configuration file, intcfg.tbl, serves two purposes in a GI system. The first purpose is to
support MXI extenders and static interrupters. The second purpose is to support the static interrupt
handlers of the V160. The hardware design of the V160 requires the use of this file if any V160 must
handle interrupts on one or more of the VME IRQ lines. This file nust contain one entry (line) for each
interrupt-handling V160. System integrators should edit the supplied copy of this file as necessary to fulfill
this requirement.

The system integrator should verify that all relevant manufacturers and models are listed in mfnameid.tbl
and model.tb], respectively. The RM will assign names of the forms "MFR_XXX" and "MODEL XXX"if
there is no corresponding entries in these table files for a device's manufacturer ID or model code,
respectively. In both these forms, the XXX will be replaced with the hexadecimal representation of the
value read from the device's configuration registers.

Only MXI extended systems require the trigger and utility bus configuration file, trigutil.tbl. The RM will
write the values found in this file to the designated MXI extenders in the designated GI nodes. For
information on how to determine the correct values to be entered in this file, consult the MXIbus
specification and the user's manuals for the particular MXI extenders.

5.2.1 RM Path

The files described above can be placed anywhere on the system's disk. The RM must then be provided
with the directory path to those tables so that it can access the files. Both the command- line interface and
the core RM function (rmShell) have three methods to get this directory path: a path argument, an
environment variable, and a default (the current directory path). The GIRM _TABLES environment
variable should be set to the full path to the Resman Tables directory. This is particularly recommended in
applications where the command-line interface is primarily used, as setting the environment variable in a
start-up script (that should also load the device driver) is not as error-prone as requiring users to enter the
directory path on the command line.

5.2.2 VXI Configuration

There are only two restrictions on the Logical Address (LA) settings of devices in each GI-VXI node.
First, the V160 must be set to Logical Address 0 in mainframe slot 0, and the V160 Slot 0 functionality
must be enabled. This allows the V160 to be the Resource Manager device in each GI-VXI node. Second,

127

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

Resource Manager

consistent with the VXIbus specification, if there will be any DC devices in a GI-VXI node, no SC devices
can be assigned to Logical Address 255. If RM detects an SC device at Logical Address 255, it will issue a
warning and will not configure any DC devices in that node.

5.2.3 Highway Integrity

All nodes must be powered up and a comiplete fiber-optic loop must be established before the RM is run on
the GI system. If at least one node in a GI system is powered off without backup power to its fiber-optic
components, thus logically breaking the fiber-optic loop, it will not be possible to communicate with any of
the other nodes. The green Sync LEDs on all GI components (2962, 3972s and V160s) will all be flashing
or continuously on when the loop is complete. These LEDs will be of assistance in locating improper fiber-
optic connections. If Sync is out on any node, it will also be out on the 2962. In this case, trace the loop
starting with the 2962 fiber OUT connection, and proceed down the loop to the first node without Sync.
Power up this node, or swap the fiber-optic cables on that node if power is already on. For further
assistance, refer to the GI component's hardware instruction manual.

5.2.4 General

No access should be made to any GI-VXI node until the RM has been run on that node. Failure to do this
will prevent access to A24 or A32 address space, and will prevent the use of operational commands to
message-based devices.

5.2.5 COMMAND-LINE INTERFACE

The resman command has six optional flags that may be issued in any order. If a flag is not specified, the
default value or behavior will be used. Flags can appear one or more times on the command line, but since
flags are processed left-to-right, the rightmost value will take effect. It is important that the command must
have "whitespace" (tabs or spaces) between all elements: the command name "resman,"” the flags, and the
flag values. Unlike some Unix programs, it is not possible to merge a number of flags together. Each must
be preceded by at least one space and the hyphen ("-") character. (For compatibility with other operating
systems, the RM will also allow the slash (/") character in place of the hyphen.)

On-line help is available for the resman command with the -h (help) flag. If this flag appears anywhere on
the command line, the following message is displayed but the RM itself will not be started:

Usage:
resman [-c #] [-h] [-n #] [-q] [-t #] [-T <path>]
Flags:
-C 2962 controller number (default: 0)
-h help - print this message
-n GI node to manage (default: all nodes 1..126)
-q quiet mode - suppress all messages (default: verbose)
-t Sysfail delay time in seconds (default: 5)

-T <path> Path to RM table directory (default: envir. GIRM_TABLES or current dir.)
The -c (controller) flag directs the RM to use a particular GI controller card in multi-highway systems. The

flag must be followed by a non-negative integer designating the desired controller. The first 2962
Interconnect Highway Driver (IHD) in a system is always controller zero (0), which is the default; the

128

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

Resource Manager

second IHD is controller one (1), and so on. The command "resman -c 1" would select the second
controller.

The -n (node) flag allows the user to manage VXI resources in only one node, as would be necessary if
power to a node was interrupted or if the node was reset. This flag must be followed by the base 10
(decimal) non-negative integer corresponding to the address of the node to be resource-managed. Note that
the address switches on the V160 (and 3972 GI CAMAC crate controller) are base 16 (hexadecimal) and
therefore the node address must be converted to its base 10 equivalent for use with this flag. The command
“resman -n 32" will manage resources for the node whose address switch reads 20. The commands
"resman -n 0" (zero) and "resman" are equivalent, as the default is zero (0) and will direct the RM to
manage all GI-VXI nodes (from 1 to 126).

System integrators should note that each time the resman command is issued with the -n flag only one node
will be managed. If it is necessary to manage 2 or more (but not all) nodes on the highway, the command
must be repeated with a new node value each time.

The -q (quiet) flag turns off all standard output, but does not suppress error and warning messages. When
this option is selected (as in "resman -q"), redirecting standard output to a file will result in an empty file.

The -t (time) flag sets the maximum time for the RM to wait for the SYSFAIL* line to be de-asserted. This
flag must be followed by a non-negative integer representing the number of seconds to wait. The default is
5 seconds, which is consistent with the VXIbus specification. However, the resman command will allow
values from zero to 4, which are not recommended; a value of zero will effectively disable the wait-for-
SYSFAIL* logic. The command "resman -t 30" will set the delay time to 30 seconds.

System integrators should use the default unless the system includes a device that takes longer than 5
seconds to complete its self-test. In this case, the longest such time should be used on the command line.
The RM starts its timer before the first node is managed, and does not reset it between nodes. If the longest
delay is used, the slowest device will be ready when or before the RM's timer expires.

The -T (tables) flag indicates the path to the RM tables directory in which the RM configuration files are
located. If supplied, it overrides the value associated with the GIRM_TABLES environment variable. This
flag must be followed by a string of no more than PATH MAX (currently) characters. Note: that if
neither the -T flag nor the GIRM_TABLES variable are used, the resman command will look for table files
in the current working directory.

129

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

Resource Manager

5.2.6 THEORY OF OPERATION

This multi-frame RM performs the following steps:

1. Configure the Logical Address map if MXI extenders are present

2. Identify the devices in the system

3. Manage the system self-tests

4. Configure the A24 and A32 address maps

5. Establish the initial system hierarchy

0. Configure the interrupt, trigger, and utility resources if MXI extenders are present
7. Initiate normal system operation

Initially, RM will monitor the SYSFAIL* line via a V160 internal register on a periodic basis until it is de-
asserted or the specified time delay expires, whichever occurs first. The following paragraphs describe
each of the above steps in more detail.

5.2.7 FILE FORMATS

All numeric values are in hexadecimal, except Logical Address in resman.tbl, and are 16-bit values unless
otherwise indicated. All strings are a maximum of 15 characters (vice 12 in NI files); the matching logic in
the GI RM only compares as much of the string as is supplied. Therefore, a name may be truncated in one
file and right-padded with blanks in another and the logic will treat them as a match. For example, 14- char
"KineticSystems" in one file will still match 15-char "KineticSystems " in another. Edit the files with any
text editor.

5.2.8 Grand Interconnect Device Table

The gidevice.tbl is an optional user supplied file. If a device does not support the MODID line, the RM
will not be able to determine what slot it occupies (see the troubleshooting section below). For such
modules, use FFFF in the slot field so the matching logic won't care which slot the device is in. Null string
("") for name entries matches anything.

Device Name (string)
Manufacturer Name (string)
Model Name (string)
Logical Address
Mainframe

Slot

GI Node

130

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

Resource Manager

5.2.9 Interrupt Configuration File

The intcfg.tbl file is a user-supplied file. An example is provided. There must be an entry in this file for
every V160 that will be handling interrupts. Only the (Extender) Logical Address, Interrupter Levels, and
GI Node fields are used for V160s; the Levels field indicates which IRQs the V160 will monitor. This
value is written to the V160s Interrupt Handler Mask register, and the appropriate IRQ lines are assigned to
the V160. If the V160 will not be handling interrupts, and there are no MXI extenders in the same node,
the Levels field should be zero (0) so the V160 handlers are not enabled. There is no need to put zeroes in
the appropriate Handler Logical Address fields; the RM does this itself. The Interrupter Directions field
has no effect on the V160 and can have any value; 0 is recommended.

For MXI extenders, the Interrupter Levels and Interrupter Directions fields will be concatenated and written
to the MXT Interrupt Configuration register.

The Handler Logical Address fields should be set to FF unless the system requirements dictate that a
specific handler must be assigned to that IRQ line. This supports devices whose interrupts are enabled on
the module with switches or jumpers, not via configuration registers. In these cases, the logical address of
the interrupt handler (not the interrupter) should be placed in the appropriate field. The value FF allows the
RM assign IRQ lines to handlers (see Interrupt Allocation under Theory of Operation, above).

Extender Logical Address (0 for V160)
Interrupter Levels (7-bit bit vector)

Bits 6-0 correspond to IRQs 7-1, respectively
Set to 1 to enable the IRQ, 0 to disable it
Interrupter Directions (7-bit bit vector)

Bits 6-0 correspond to TIRQs 7-1, respectively
Set to 1 to route into mainframe, 0 to route out of mainframe
VME IRQ 1 Handler Logical Address

VME IRQ 2 Handler Logical Address

VME IRQ 3 Handler Logical Address

VME IRQ 4 Handler Logical Address

VME IRQ 5 Handler Logical Address

VME IRQ 6 Handler Logical Address

VME IRQ 7 Handler Logical Address

GI Node

5.2.10 Manufacturer Name Table

The mfnameid.tbl file documents known manufactures of different VXI devices.
Manufacturer Name (string)
Manufacturer ID

5.2.11 Model Table

The model.tbl file (no GI node # field) usable as-is; add devices as necessary (may want to keep separate
master file & extract devices that actually appear in system)

Model Name (string)

Manufacturer Name (string)
Model Code

131

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

Resource Manager

5.2.12 Resource Table

The resman.tbl is the only file generated by the resource manager. This file is used by the VISA when the
default resource table is opened.

1. Logical Address (expressed in base 10)

2. Device Name (string)

3. Commander's Logical Address

4. Mainframe (NI uses Extender Logical Address)
S. Slot

6. Manufacturer ID

7. Manufacturer Name (string)

8. Model Code

9. Model Name (string)

10. VXI Device Class

11. VXI Extended Subclass

12. VXI Address Space Code

13. VXI Address Base for memory (32-bit integer)
14. VXI Address Size for memory (32-bit integer)
15. Memory Class Attributes

16. VXI Interrupter Levels

17. VXI Interrupt Handler Levels

18. Extender/Controller data

19. Word-Serial "Async Mode Control" response
20. Word-Serial "Control Response" response

21. Contents of Protocol Register

22, Miscellaneous Flags

23. Status Register state

24. GI Node

132

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

5.2.13 Trigger Table

The trigutil.tbl file is an optional user supplied file. An example is provided.

Extender Logical Address
TTL Trigger Lines (8-bit bit vector)
Bits 7-0 correspond to triggers 7-0, respectively
Set to 1 to enable the trigger, 0 to disable it
TTL Trigger Directions (8-bit bit vector)
Bits 7-0 correspond to triggers 7-0, respectively
Set to 1 to route into mainframe, 0 to route out of mainframe
ECL Trigger Lines (6-bit bit vector)
Bits 5-0 correspond to triggers 5-0, respectively
Set to 1 to enable the trigger, 0 to disable it
ECL Trigger Directions (6-bit bit vector)
Bits 5-0 correspond to triggers 5-0, respectively
Set to 1 to route into mainframe, 0 to route out of mainframe
Utility Bus Register value (6-bit integer)
GI Node

Resource Manager

133

i
i
|
1
i

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6 VISA Library

KineticSystems is a member of the VXI Plug and Play Systems Alliance. KineticSystems provides this
library to allow users to interact with devices in the VXI chassis on the Grand Interconnect Highway using
the VISA (Virtual Instrument Software Architecture). It should be noted that most VXI mmplementations
are done with the VXI chassis mapped directly to I/O space of the host processor. KineticSystems
implementation is via a high-speed data highway, the Grand Interconnect.

6.1 VISA Overview

The VISA Library (VISA) for the KSC 2962 device driver is designed to implement simple functioning of
VXI cards in crates that exist on the Grand Interconnect Highway. These routines make calls to the
Application Programming Interface (API) which in turn makes the actual system calls to the KSC 2962
device driver. All VISA calls and error codes are defined by the VISA header files,

VISA only provides a subset of the functionality that is available using the KSC 2962 device and the V160
Slot0 controller. To truly use the functionality of these devices, the API must be used.

The key to much of the VISA Plug and Play is based on the functioning of the Resource Manager. The
Resource Manager is executed as part of system startup. The Resource Manager identifies all devices,
instruments, or resources available within chassis on the Grand Interconnect highway. The execution of the

Resource Manager results in the generation of the resman.tbl file. This file is used by all processes that use
the VISA library. This file is read by the VISA routine: viOpenDefaultRM.

The current release of the VISA is implemented as a linkable object library. Future releases may be
implemented as a shared library. Users must relink their VISA applications with subsequent releases of
this software.

6.1.1 VISA Routines Overview

The VISA specification states a minimum of set of function calls that each device must support. It also
amplifies certain mapping functions for directly mapped devices. This direct mapping does not fit into the
Grand Interconnect architecture. The functions that are part of the VISA library are:

e viAssertTrigger - Assert a software trigger

o viClear - Clear a device

e ViClose - Closes a session with a device

e viFindNext - Returns the next device found during a previous call to viFindRsrc

e viFindRsrc - Queries a VISA system to locate the devices associated with a specified interface.

e viGetAttribute - Retrieves the state of a resource attribute.

e viln8 - Reads an eight bit value from the specified memory space (assigned memory-base + offset).
e vilnl6 - Read a sixteen bit word from the specified memory space (assigned memeory space plus offset)
e viln32 - Reads in a thirty-two bit word from the specified memory space (assigned memory space + offset)
e ViMapAddress - Maps memory space

e ViMove - Moves a block of data

L]

ViMoveln8 - Moves a block of data from the specified memory space (assigned memory space + offset) to local
memory

e ViMovelnl6 - Moves a block of data from the specified memory space (assigned memory space + offset) to local
memory

134

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

ViMoveln32 - Moves a block of data from the specified memory space (assigned memory space + offset) to local
memory

ViMoveOut8 - Moves a block of data from local memory to the specified address space and offset
ViMoveOutl6 - Moves a block of data from local memory to the specified address space and offset
ViMoveOut32 - Moves a block of data from local memory to the specified address space and offset
viOpen - Opens a session to the specified device

viOpenDefaultRM - Creates a session with the Default Resource Manager

viOut8 - Writes an 8-bit word to the specified memory space

viOutl6- Writes a 16-bit word to the specified memory space

viOut32 - Write a 32-bit word to the specified memory space

viPeek8 - Reads an §-bit value from the specified address location

viPeek16 - Reads a 16-bit value from the specified address location

viPeek32- Reads a 32-bit value from the specified address location

viPoke8 - Writes an 8-bit value to the address location pointed to by address

viPokel6 - Writes a 16-bit value to the address location pointed to by address

viPoke32 - Writes a 32-bit value to the address location pointed to by address

viPrintf - Write data to a device using formatting of data

viQueryf - Performs a formatted write and read through a single operation invocation

ViRead - Reads data from a device synchronously

viReadSTB - Reads a status byte of the service request

viScanf - Reads data from a device using formatted input

viSetAttribute - Sets the state of a resource attribute for a device

viSPrintf - Formats write to a user-specified buffer using a variable number of arguments

viSScanf - Formats read from a user-specified buffer using a variable number of arguments
viStatusDesc - Returns a user readable string that describes the passed status code
viUnmapAddress - UNmaps memory space

viVPrintf - Write data to a device using formatting of data

viVQueryf - Performs a formatted write and read through a single operation invocation

viVScanf - Read data from a device using formatted input

viVSPrint - Formats write to the device using a variable argument list

viVSScanf - Formats read from a user-specified buffer using a variable argument list
viVxiCommandQuery - Sends the device a miscellaneous command or query and/or retrieves the response to a
previous query.

viWrite - Writes Data to a device synchronously

The first time that any of the VISA calls are made, an initialization must be done. The VISA standard
provides no interface for opening the VISA library or for initializing the VISA on a particular platform.
Further, the standard calls provide no way to provide a pointer to any VISA global structure (such as a file
handle). This limitation suggest that the library must provide dynamic storage within itself which will limit
the ability to generate a shareable reentrant library. The “sesn” argument is used only for the session
manager calls (viFindRsrc, ViOpen, ViFindNext, viFindFirst).

Users programming with VISA must use the visa32.1ib file to link to the visa32.dIl. Users must #include
visa.h.

135

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.1.2 viAssertTrigger

Syntax

int viAssertTrigger (viSession vi,
viUInt16 protocol);

Purpose

This routine is part of the VISA Library (VISA) and its purpose is to assert a software or hardware trigger.

Description

This routine is part of the VISA Library (VISA) and its purpose is to assert a software or hardware trigger,
This function will source a software or hardware trigger dependent on the interface type. For a GPIB
device, the device is addressed to listen, and then the GPIB 'GET' command is sent. For a VXI device, if
VI_ATTR_TRIG_ID is VI_TRIG_SW, then the device is sent the Word Serial Trigger command. For a
VXI device, if VI_ATTR_TRIG_ID is any other value, a hardware trigger is sent on the line corresponding
to the value of that attribute.

For a VXI device, if VI ATTR_TRIG_ID is any other value, a hardware trigger
is sent on the line corresponding to the value of that attribute.

VI TRIG_SW (-1) (Use word serial command "GET")
VI_TRIG_TTLO 0)
VI_TRIG_TTL1 1
VI_TRIG_TTL2 (2)
VI_TRIG_TTL3 3
VI_TRIG_TTL4 ©)]
VI_TRIG_TTL5 (5)
VI_TRIG_TTL6 (6)
VI_TRIG_TTL7 @)
VI_TRIG_ECLO 8)
VI_TRIG_ECL1 9)

For GPIB and VXI software triggers, VI TRIG_PROT_DEFAULT is the only valid protocol. For VXI
hardware registers, VI_TRIG_PROT_DEFAULT is equivalent to VIL_TRIG_PROT_SYNC.

Parameters
Parameter Name | Direction Description
vi Input Unique logical identifier to a session.
Trigger protocol to use during assertion. Valid values are:
protocol input VI_TRIG_PROT DEFAULT, VI_TRIG_PROT ON,
VI_TRIG_PROT_OFF, VI TRIG PROT SYNC

136

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

Return Values
VI_SUCCESS gil\flsiczpecified trigger was successfully asserted to the
VI_ERROR TMO Timeout expired before operation completed.
VI_ERROR RAW_WR_PROT VIOL Violation of raw write protocol occurred during transfer.
VI ERROR_RAW_RD PROT VIOL Violation of raw read protocol occurred during transfer.

VI_ERROR_BERR Bus error occurred during transfer.
VI_ERROR IO Unknown error code.
VI_ERROR INV_MASK Unknown trigger type mask.

137

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.2 viClear

Syntax
int viClear (viSession vi);

Purpose
This routine is part of the VISA Library (VISA) and its purpose is to clear a device.

Description

This routine is part of the VISA Library (VISA) and its purpose is to clear a device.

This function performs an IEEE 488.2-style clear of the device (for VXI, the Word Serial Clear command
should be used; for GPIB systems, the Selected Clear command should be used). !

Note an invocation of the viClear function on an INSTR resource will discard the read and write buffers
used by the formatted I/O services for that session.

Parameters
Parameter Name | Direction Description
vi Input Unique logical identifier to a session.

Return Values

VI _SUCCESS The specified trigger was successfully asserted to the

device.
VI_ERROR_INV_SESSION
VI_ERROR_NSUP_OPER The given vi does not support this operation.
VI_ERROR TMO Timeout expired before operation completed.
VI_ERROR_RAW_WR_PROT VIOL X;glsafgron of raw write protocol occurred during
VI ERROR_RAW_RD PROT VIOL Violation of raw read protocol occurred during transfer.
VI_ERROR_BERR Bus error occurred during transfer.
VI_ERROR_IO Unknown error code.

138

Windows 2000 Device Driver/API

2962 PCI Grand Interconnect

6.3 viClose

VISA Library

Syntax

it viClose (viSession vi);

Purpose

This routine is part of the VISA Library (VISA) and its purpose is to close the specified session.

Description

This routine is part of the VISA Library (VISA) and its purpose is to close the specified session.

This function closes a session to a device, event quene or a "find session". By calling this function a
process frees all the data structures that had been allocated for the session.

Parameters

Parameter Name

Direction

Description

V1

Input

Unique logical identifier to a session.

Return Values

VI_SUCCESS

VI_ERROR_INV_SESSION
VI_WARN_NULL OBJECT

VI_ERROR_CLOSING_FAILED

The specified trigger was successfully asserted to the
device.

The given session or object reference is invalid

The specified object reference is uninitialized.

Unable to deallocate the previously allocated data
structures corresponding to this session or object
reference.

139

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.4 viFindNext

Syntax
int viFindNext (viSession vi,
viPRsrc instrDesc);

Purpose
This routine is part of the VISA Library (VISA) and its purpose is to return the next device found in the
linked list of devices that match the user specified search string during a previous call to viFindRsrc().

Description

This routine is part of the VISA Library (VISA) and its purpose is to return the next device found in the
linked list of devices that match the user specified search string during a previous call to viFindRsrc(). The
list is referenced by the handle that was returned by viFindRsrc().

Parameters

vi Unique logical identifier to a sessmn'.m
Returns a string identifying the location of a device. Strings can
instrDesc Input then be passed to viOpen() to establish a session to the given
device.
Return Values
VI SUCCESS The sp'e01ﬁed trigger was successfully asserted to
- the device.
VI_ERROR_INV_SESSION The given session or object reference is invalid
VI_ERROR_NSUP_OPER The given vi does not support this operation.

Insufficient location information or resource not

VI_ERROR_RSRC NFOUND .
= - - present in system.

140

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.5 viFindRsrc

Syntax

int viFindRsrc (viSession vi,
viString expr,
viFindList findList ptr,
viUInt 32 retCnt,
viRsrc desc);

Purpose
This routine is part of the VISA Library (VISA) and its purpose is to query a VISA system to locate the
devices associated with a specific interface.

Description

This routine is part of the VISA Library (VISA) and its purpose is to query a VISA system to locate the
devices associated with a specific interface. It accomplishes this by matching the value specified in the
‘expr’ parameter with the devices available for a particular interface. On successful completion, it returns
the first device found in the list along with a count to indicate if there were more devices found for the
designated interface.

This function also returns a handle to a FIND session. This handle, 'vi' points to the list of devices and it
must be used as an input to viFindNext(). When this handle is no longer needed, it should be passed to
viClose().

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
When an incomplete name of class identifier of a resource
expr Input is specified in this parameter, this operation searches for all
resources with names matching 'expr'.
Returns a handle identifying this search session. This
findList ptr Input handle will be used as input in viFindNext(). It should be
mitialized to VI NULL.
retCnt Input Number of resources that match 'expr'.
Returns a string identifying the location of a device,
desc Input Strings can then be passed to viOpen() to establish a session

to the given device.

Return Values
VI SUCCESS The sp§c1ﬁed trigger was successfully asserted to
— the device.

VI_ERROR_INV_SESSION The given session or object reference is invalid

141

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VI_ERROR_NSUP_OPER
VI_ALLOC
VI_ERROR_INV_EXPR
VI_ERROR_RSRC_NFOUND

VISA Library

The given vi does not support this operation.
Insufficient system resources.
Invalid expression specified for search.

Insufficient location information or resource not
present in system.

142

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

6.6 viGetAttribute

VISA Library

Syntax

int viGetAttribute (viSession vi,

viAttr attribute,

viPAttrState attrState);

Purpose

This routine is part of the VISA Library (VISA) and its purpose is to retrieve the state of a resource

attribute.

Description

This routine is part of the VISA Library (VISA) and its purpose is to retrieve the state of a resource

attribute.

This function retrieves the state of a specified attribute from the specified session.

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
attribute Input Resource attribute for which the state query is made.
The state of the queried attribute for a specified resource. The
attrState Input interpretation of the returned value is defined by the individual
resource.

Return Values

VI_SUCCESS

VI_ERROR_INV_SESSION
VI_ERROR_NSUP ATTR

The specified trigger was successfully asserted to the
device.

The given session or object reference is invalid

The specified attribute is not defined by the referenced
session, event, or find list.

143

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.7 viln16

Syntax

mt viln16 (viSession vi,
viUInt16 space,
viBusAddress offset,
viPUInt16 value);

Purpose
This routine is part of the VISA Library (VISA) and its purpose is to read in a 16-bit word from the
specified memory space (assigned memory space + offset). i

Description
(Register based function.)

This routine is part of the VISA Library (VISA) and its purpose is to read in a 16-bit word from the
specified memory space (assigned memory space + offset).

This function uses the specified address space to read in 16 bits of data from the specified offset of the
device associated with this INSTR Resource.

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
space Input Specifies the address space:
Value Description

VI_A16_SPACE A16 address space of VXI/MXI bus
VI_A24 SPACE A24 address space of VXI/MXI bus
VI_A32 SPACE A32 address space of VXI/MXI bus

offset Input Offset (in bytes) of the device to read from.
The state of the queried attribute for a
specified resource. The interpretation of the
returned value is defined by the individual
resource.

value Input

Return Values
The specified trigger was successfully asserted to

VI_SUCCESS)

- the device.
VI_ERROR INV_SESSION The given session or object reference is invalid
VI_ERROR NSUP_OPER The given vi does not support this operation.
VI_ERROR BERR Bus error occurred during transfer.

144

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VI_ERROR_INV_SPACE
VI_ERROR_INV_OFFSET
VI_ERROR_INV-SETUP
VI_ERROR_NSUP WIDTH

VISA Library

Invalid address space specified.

Invalid offset specified.

Invalid setup.

Specified width is not supported by this hardware.

145

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.8 viln8

Syntax

int viln8 (viSession vi,
viUInt16 space,
viBusAddress offset,
viPUInt8 value);

Purpose
This routine is part of the VISA Library (VISA) and its purpose is to read an 8-bit value from the specified
memory space (assigned memory-base + offset).

Description
This routine is part of the VISA Library (VISA) and its purpose is to read an 8-bit value from the specified
memory space (assigned memory-base + offset).

This function, by using the specified address space, reads in 8 bits of data from the specified offset of the
device associated with this INSTR resource. This operation does not require viMapAddress() to be called
prior to its invocation.

Note an invocation of the viClear function on an INSTR resource will discard the read and write buffers
used by the formatted I/O services for that session.

Parameters
Parameter Name | Direction Description
vi Input Unique logical identifier to a session.
space Input Specifies the address space:
Value Description

VI_A16_SPACE A16 address space of VXI/MXI bus
VI_A24 SPACE A24 address space of VXI/MXI bus
VI_A32 SPACE A32 address space of VXI/MXI bus

offset Input Offset (in bytes) of the device to read from.
The state of the queried attribute for a
specified resource. The interpretation of the

value Input returned value is defined by the individual
resource.
Return Values
VI SUCCESS The sp§c1ﬁed trigger was successfully asserted to
- the device.
VI_ERROR_INV_ SESSION The given session or object reference is invalid

146

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VI_ERROR_NSUP_OPER
VI_ERROR_BERR
VI_ERROR_NSUP WIDTH
VI_ERROR_INV_SPACE
VI_ERROR_INV_OFFSET
VI_ERROR_INV_SETUP

VISA Library

The given vi does not support this operation.

Bus error occurred during transfer.

Specified width is not supported by this hardware.
Invalid address space specified.

Invalid offset specified.

Invalid setup.

147

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.9 viMapAddress

Syntax

int viMapAddress (viSession vi,
viUInt16 mapSpace,
viBusAddress mapBase,
viBusSize mapSize,
viBoolean Access,
viAddr suggested,
viPAddr address);

Purpose
If suggested parameter is not VI NULL, the operating system attempts to map the memory to the address
specified in suggested.

Description
(Register based functions.)

This routine is part of the VISA Library (VISA) and its purpose is to map memory space.

This function maps in a specified memory space. The memory space that is mapped is dependent on the
type of interface specified by the vi parameter and mapSpace parameter (refer to the following table).

Parameters
Parameter:Name | Direction Description
Vi Input Unique logical identifier to a session.
If the vi is a VXI or MXI session, mapSpace is used to specify
mapSpace Input
the address space to map.
mapBase Input Offset of the memory to be mapped.
mapSize Input Amount of memory to map.
Access Fput Specifies whether to request owner privileges with this mapping.

Having owner privileges lets you modify the hardware context.

If suggested parameter is not VI_NULL, the operating system
attempts to map the memory to the address specified in
suggested Input suggested. There is no guarantee, however, that the memory will
be mapped to that address. This operation may map the memory
into an address region different from suggested.

address Input Address in your process space where the memory was mapped.

Return Values
VI SUCCESS The sp§c1ﬁed trigger was successfully asserted to
- the device.

VI_ERROR INV_ SESSION The given session or object reference is invalid

148

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VI_ERROR_NSUP_OPER
VI_ERROR _RSRC_LOCKED

VI_ERROR_INV_SPACE
VI_ERROR_WINDOW_MAPPED

VI_ERROR_INV_ACC_MODE
VI_ERROR_INV-OFFSET

VISA Library

The given vi does not support this operation.

Specified type of lock cannot be obtained because
the resource is already locked with a lock type
incompatible with the lock requested.

Invalid address space specified.

The specified session already contains a mapped
window.
Invalid access mode.

Invalid offset specified.

149

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

6.10 viMove

VISA Library

Syntax

it viMove (ViSession vi,
ViUlInt16 srcSpace,
ViBusAddress srcOffset,
ViUlInt16 srcWidth,
ViUInt16 destSpace,
ViBusAddress destOffset,
ViUlInt16 destWidth,
ViBusSize length);

Purpose

This routine is part of the VISA Library and its purpose is to move a block of data from the specified
memory space (assigned memory space + offset) to local memory.

Description

This operation moves data from the specified source to the specified destination. The source and the
destination can either be local memory or the offset of the interface with which this MEMACC Resource is
associated. This operation uses the specified data width and address space. In some systems, such as VXI,
users can specify additional settings for the transfer, like byte order and access privilege, by manipulating

the appropriate attributes.

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a sessiomn.
srcSpace Input
srcOffset Input
srcWidth Input
destSpace Input
destOffset Input
destWidth Input
length Input

Return Values
VI SUCCESS

VI_ERROR_INV_SESSION
VI_ERROR_NSUP_OPER
VI_ERROR_BERR
VI_ERROR_INV_SPACE
VI_ERROR_INV_SETUP
VI_ERROR_INV_OFFSET

The specified trigger was successfully asserted to
the device.

The given session or object reference is invalid

The given vi does not support this operation.

Bus error occurred during transfer.

Invalid address space specified.

Invalid setup.

Invalid offset specified.

150

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library
VI_ERROR NSUP WIDTH Specified width is not supported by this hardware.
VI ERROR_NSUP_OFFSET Specified offset is not accessible from this

hardware.

151

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.11 viMoveln8

Syntax

int viMoveIn8 (ViSession vi,
ViUInt16 space,
ViBusAddress offset,
ViBusSize length,
ViAUInt8 buf8);

Purpose
This routine is part of the VISA Library and its purpose is to move a block of data from the specified
memory space (assigned memory space + offset) to local memory.

Description
(Register based function)

This routine is part of the VISA Library and its purpose is to move a block of data from the specified
memory space (assigned memory space + offset) to local memory.

This function uses the specified address space to read in 8 bits of data from the specified offset.

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
space Input
offset Input Offset of the starting address to read
length Input Number of elements to transfer
bufg Input Data read from bus

Return Values

VI SUCCESS The spgcified trigger was successfully asserted to
- the device.

VI_ERROR INV_SESSION The given session or object reference is invalid

VI_ERROR NSUP_OPER The given vi does not support this operation.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SPACE Invalid address space specified.

VI_ERROR INV SETUP Invalid setup.

VI_ERROR _INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP WIDTH Specified width is not supported by this hardware.

VI ERROR NSUP OFFSET Specified offset is not accessible from this
- - - hardware.

152

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.12 viMoveln16

Syntax

it viMoveln16 (ViSession vi,
ViUlInt16 space,
ViBusAddress offset,
ViBusSize length,
ViAUInt16 bufl6);

Purpose
This routine is part of the VISA Library and its purpose is to move a block of data from the specified
memory space (assigned memory space + offset) to local memory.

Description
(Register based function)

This routine is part of the VISA Library and its purpose is to move a block of data from the specified
memory space (assigned memory space + offset) to local memory.

This function uses the specified address space to read in 16 bits of data from the specified offset.

Parameters
Parameter Name | Direction Description
vi Input Unique logical identifier to a session.
space Input
offset Input Offset of the starting address to read
length Input Number of elements to transfer
bufl6 Input Data read from bus

Return Values

VI SUCCESS The sp;ciﬁed trigger was successfully asserted to
- the device.

VI_ERROR_INV_SESSION The given session or object reference is invalid

VI_ERROR NSUP_OPER The given vi does not support this operation.

VI_ERROR BERR Bus error occurred during transfer.

VI_ERROR INV_SPACE Invalid address space specified.

VI_ERROR INV_SETUP Invalid setup.

VI_ERROR INV_OFFSET Invalid offset specified.

VI_ERROR_NSUP WIDTH Specified width is not supported by this hardware.
Specified offset is not accessible from this

VI ERROR NSUP OFFSET
- — - hardware.

153

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

6.13 viMoveln32

VISA Library

Syntax

int viMoveIn32 (ViSession vi,
ViUIntl6 space,
ViBusAddress offset,
ViBusSize length,
ViAUInt16 buf32);

Purpose

This routine is part of the VISA Library and its purpose is to move a block of data from the specified
memory space (assigned memory space + offset) to local memory.

Description
(Register based function)

This routine is part of the VISA Library and its purpose is to move a block of data from the specified
memory space (assigned memory space + offset) to local memory.

This function uses the specified address space to read in 32 bits of data from the specified offset.

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
Space Input
offset Input Offset of the starting address to read
length Input Number of elements to transfer
buf32 Input Data read from bus

Return Values

VI_SUCCESS

VI_ERROR_INV_SESSION
VI_ERROR_NSUP OPER

VI_ERROR_BERR

VI_ERROR_INV_SPACE
VI_ERROR_INV_SETUP
VI_ERROR_INV_OFFSET
VI_ERROR_NSUP WIDTH

VI_ERROR_NSUP_OFFSET

The specified trigger was successfully asserted to
the device.

The given session or object reference is invalid

The given vi does not support this operation.

Bus error occurred during transfer.

Invalid address space specified.

Invalid setup.

Invalid offset specified.

Specified width is not supported by this hardware.
Specified offset is not accessible from this
hardware.

154

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

6.14 viMoveOut8

VISA Library

Syntax

it viMoveOut8 (ViSession vi,
ViUInt16 space,
ViBusAddress offset,
ViBusSize length,
ViAUInt8 bufg);

Purpose

This routine is part of the VISA Library and its purpose is to move a block of data from the specified
memory space (assigned memory space + offset) to local memory.

Description
(Register based function)

This routine is part of the VISA Library and its purpose is to move a block of data from local mermory to

the specified address space and offset.

This function, by using address space, writes 8 bits of data to the specified offset. This operation does not
require viMapAddress() to be called prior to its invocation.

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
space Input
offset Input Offset of the starting address to read
length Input Number of elements to transfer
buf® Input Data read from bus

Return Values

VI_SUCCESS

VI_ERROR_INV_SESSION
VI_ERROR_NSUP OPER

VI_ERROR_BERR

VI_ERROR_INV_SPACE
VI_ERROR_INV_SETUP
VI_ERROR_INV OFFSET
VI_ERROR_NSUP_WIDTH

VI_ERROR_NSUP_OFFSET

The specified trigger was successfully asserted to
the device.

The given session or object reference is invalid

The given vi does not support this operation.

Bus error occurred during transfer.

Invalid address space specified.

Invalid setup.

Invalid offset specified.

Specified width is not supported by this hardware.
Specified offset is not accessible from this
hardware.

155

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

6.15 viMoveOut16

VISA Library

Syntax

mt viMoveOut16(ViSession vi,
ViUInt16 space,
ViBusAddress offset,
ViBusSize length,
ViAUInt16 bufl16);

Purpose

This routine is part of the VISA Library and its purpose is to move a block of data from the specified
memory space (assigned memory space + offset) to local memory.

Description
(Register based function)

This routine is part of the VISA Library and its purpose is to move a block of data from local memory to

the specified address space and offset.

This function, by using address space, writes 16 bits of data to the specified offset. This operation does not
require viMapAddress() to be called prior to its invocation,

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.

space Input

offset Input Offset of the starting address to read

length Input Number of elements to transfer

bufl6 Input Data read from bus
Return Values

VI_SUCCESS The specified trigger was successfully asserted to

VI_ERROR_INV_SESSION
VI_ERROR_NSUP_OPER

VI_ERROR_BERR

VI_ERROR_INV_SPACE
VI_ERROR_INV_SETUP
VI_ERROR_INV_OFFSET
VI_ERROR _NSUP_WIDTH

VI_ERROR_NSUP OFFSET

the device.

The given session or object reference is invalid

The given vi does not support this operation.

Bus error occurred during transfer.

Invalid address space specified.

Invalid setup.

Invalid offset specified.

Specified width is not supported by this hardware.
Specified offset is not accessible from this
hardware.

156

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

6.16 viMoveOut32

VISA Library

Syntax

int viMoveOut32(ViSession vi,
ViUlInt16 space,
ViBusAddress offset,
ViBusSize length,
ViAUInt32 buf32);

Purpose

This routine is part of the VISA Library and its purpose is to move a block of data from the specified
memory space (assigned memory space + offset) to local memory.

Description
(Register based function)

This routine is part of the VISA Library and its purpose is to move a block of data from local memory to

the specified address space and offset.

This function, by using address space, writes 32 bits of data to the specified offset. This operation does not
require viMapAddress() to be called prior to its invocation.

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
space Input
offset Input Offset of the starting address to read
length Input Number of elements to transfer
buf32 Input Data read from bus

Return Values
VI _SUCCESS

VI_ERROR_INV_SESSION
VI_ERROR_NSUP_OPER
VI_ERROR_BERR
VI_ERROR_INV_SPACE
VI_ERROR_INV_SETUP
VI_ERROR_INV_OFFSET
VI_ERROR_NSUP WIDTH

VI_ERROR_NSUP_OFFSET

The specified trigger was successfully asserted to
the device.

The given session or object reference is invalid

The given vi does not support this operation.

Bus error occurred during transfer.

Invalid address space specified.

Invalid setup.

Invalid offset specified.

Specified width is not supported by this hardware.
Specified offset is not accessible from this
hardware.

157

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.17 viOpen

Syntax

int viOpen(ViSession sesn,
ViRsrc rstcName,
ViAccessMode accessMode,
ViUlInt32 timeout,
ViSession vi);

Purpose
This routine is part of the VISA Library (VISA) and its purpose is to open a session to the specified
device.

Description
This routine is part of the VISA Library (VISA) and its purpose is to open a session to the specified device
(creates the necessary data structures to communicate with the device.)

This operation opens a session to the specified device and returns a session identifier that will be used to
call other routines to perform operations on that device.

The address string should look like one of the following:

VXI[board]::LOGICAL ADDR[::INSTR]
ie. VXI0::1::INSTR

GPIB-VXI[board][::GPIB-VXIprimary addr]::VXI logical addr:: [INSTR]
ie. GPIB-VXI::9::INSTR

GPIB[board]::primary addr[::secondary addr][::INSTR]

ie. GPIB::1::0
Parameters
Parameter Name | Direction Description
sesn Input Resource Manager session (should always be
viDefaultRM for VISA).
rsrcName Input Unique symbolic name of a resource, with the
appropriate initialization.
accessMode Input VI_NULL for VISA .
timeout Input VI NULL for VISA .
vi Output Unique logical identifier reference to a session.

Return Values

VI_SUCCESS The specified trigger was successfully asserted to

the device.

158

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VI_ERROR_INV_SESSION
VI_ERROR_NSUP_OPER
VI_ERROR_INV-ACC_MODE
VI_ERROR_INV_RSRC_NAME
VI_ERROR_ALLOC

VI_WARN_CONFIG_NLOADED
VI_SUCCESS_DEV_NPRESENT

VI_ERROR_RSRC_NFOUND
VI_ERROR_SYSTEM_ERROR

VISA Library

The given session or object reference is invalid

The given vi does not support this operation.

Invalid access mode.

Invalid resource reference specified. Parsing error.
Insufficient system resources.

The specified configuration either does not exist or
could not be loaded; using VISA-specified defaults.
Session opened successfully, but the device at the
address is not responding.

Insufficient location information or resource not
present in system.

Unknown system error.

159

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.18 viOpenDefaultRM

Syntax
int viOpenDefaultRM(ViSession *sesn_ptr);

Purpose
This routine is part of the VISA Library (VISA) and its purpose is to create a session with the Default
Resource Manager.

Description
This routine is part of the VISA Library (VISA) and its purpose is to create a session with the Default
Resource Manager.

This function must be called before any VISA operations can be invoked. The first call to this function
initializes the VISA system, including the Default Resource Manager resource, and also returns a pointer to
that resource. Subsequent calls to this function return unique session pointers to the same Default Resource
Manager resource.

This routine uses the following functions:

ksc_init allocate/populate the device handle structure
ksc_set partitions define the size of the device partitions
Parameters
Parameter Name Direction Description
sesn_ptr Output Unique pointer to the default resource manager.

Return Values
The specified trigger was successfully asserted to the

VI_SUCCESS .

- device.
VI_ERROR ALLOC Insufficient system resources.
VI_ERROR_SYSTEM_ERROR Unknown system error

160

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.19 viOut8

Syntax

int viOut8 (viSession vi,
viUInt16 space,
viBusAddress offset,
viUInt8 value);

Purpose
This routine is part of the VISA Library (VISA) and its purpose is to write a 8-bit word to the specified
memory space.

Description
(Register based function.)

This routine is part of the VISA Library (VISA) and its purpose is to write a 8-bit word to the specified
memory space (assigned memory space + offset.)

This function, by using address space, writes 8 bits of data to the specified offset of the device associated
with this INSTR resource. This operation does not require viMapAddress() to be called prior to its
invocation.

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
space Input Specifies the address space:
Value Description

VI_A16 _SPACE A16 address space of VXI/MXI bus

VI_A24 SPACE A24 address space of VXI/MXI bus

VI _A32 SPACE A32 address space of VXI/MXI bus
offset Input Offset (in bytes) of the device to read from.
value Input 8 bit value written to the bus.

Return Values
The specified trigger was successfully asserted to

VI_SUCCESS)

- the device.
VI_ERROR_INV SESSION The given session or object reference is invalid
VI_ERROR NSUP_ OPER The given vi does not support this operation.
VI_ERROR BERR Bus error occurred during transfer.
VI_ERROR _INV_SPACE Invalid address space specified.
VI ERROR INV OFFSET Invalid offset specified.

161

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VI_ERROR_INV_SETUP
VI_ERROR_NSUP WIDTH

VI_ERROR_NSUP_OFFSET

VISA Library

Invalid setup.
Specified width is not supported by this hardware.

Specified offset is not accessible from this
hardware.

162

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.20 viOut16

Syntax

int viOut16 (viSession vi,
viUInt16 space,
viBusAddress offset,
viUInt16 value);

Purpose
This routine is part of the VISA Library (VISA) and its purpose is to write a 16-bit word to the specified
memory space.

Description
(Register based function,)

This routine is part of the VISA Library (VISA) and its purpose is to write a 16-bit word to the specified
memory space (assigned memory space -+ offset.)

This function, by using address space, writes 16 bits of data to the specified offset of the device associated
with this INSTR resource. This operation does not require viMapAddress() to be called prior to its
invocation.

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
space Input Specifies the address space:
Value Description
VI_A16_SPACE A16 address space of VXI/MXI bus
VI_A24 SPACE A24 address space of VXI/MXI bus
VI_A32 SPACE A32 address space of VXI/MXI bus
offset Input Offset (in bytes) of the device to read from.
value Input 16-bit value written to the bus.

Return Values
The specified trigger was successfully asserted to

VI_SUCCESS .

— the device.
VI_ERROR_INV_SESSION The given session or object reference is invalid
VI_ERROR_NSUP OPER The given vi does not support this operation.
VI_ERROR_BERR Bus error occurred during transfer.

163

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VI_ERROR_INV_SPACE
VI_ERROR_INV_OFFSET
VI_ERROR_INV_SETUP
VI_ERROR NSUP_WIDTH

VI_ERROR _NSUP_OFFSET

VISA Library

Invalid address space specified.

Invalid offset specified.

Invalid setup.

Specified width is not supported by this hardware.

Specified offset is not accessible from this
hardware.

164

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.21 viOut32

Syntax

int viOut32 (viSession vi,
viUInt16 space,
viBusAddress offset,
viUInt32 value);

Purpose
This routine is part of the VISA Library (VISA) and its purpose is to write a 32-bit word to the specified
memory space.

Description
(Register based function.)

This routine is part of the VISA Library (VISA) and its purpose is to write a 32-bit word to the specified
memory space (assigned memory space + offset.)

This function, by using address space, writes 32 bits of data to the specified offset of the device associated
with this INSTR resource. This operation does not require viMapAddress() to be called prior to its
invocation.

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
space Input Specifies the address space:
Value Description

VI_A16_SPACE A16 address space of VXI/MXI bus
VI_A24 SPACE A24 address space of VXI/MXI bus
VI_A32 SPACE A32 address space of VXI/MXI bus

offset Input Offset (in bytes) of the device to read from.
value Input 32-bit value written to the bus.

Return Values
The specified trigger was successfully asserted to

VI_SUCCESS)

- the device.
VI_ERROR INV_SESSION The given session or object reference is invalid
VI_ERROR_NSUP_OPER The given vi does not support this operation.
VI_ERROR BERR Bus error occurred during transfer.
VI ERROR INV SPACE Invalid address space specified.

165

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VI_ERROR_INV_OFFSET
VI_ERROR_INV_SETUP
VI_ERROR_NSUP WIDTH

VI_ERROR_NSUP OFFSET

VISA Library

Invalid offset specified.
Invalid setup.
Specified width is not supported by this hardware.

Specified offset is not accessible from this
hardware.

166

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.22 viPeek8

Syntax

viPeek8 (viSession vi,
viUInt16 space,
viPUlInt8 valg);

Purpose
This routine is part of the VISA Library (VISA) and its purpose is to read a 8-bit value from the specified
address location.

Description

This routine is part of the VISA Library (VISA) and its purpose is to read a 8-bit value from the specified
address location. The address must be a valid memory address in the current process previously mapped by
a call to viMapAddress().

Parameters
Parameter Name Direction Description

vi Input Unique logical identifier to a session.

space Input Specifies the address space:

Value Description

VI _Al6 SPACE A16 address space of VXI/MXI bus
VI_A24 SPACE A24 address space of VXI/MXI bus
VI _A32 SPACE A32 address space of VXI/MXI bus

val8 | Input | Value read from the bus.

Return Values
No Errors

167

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

6.23 viPeek16

VISA Library

Syntax

viPeek16(viSession vi,
viUInt16 space,
viPUInt16 vall6);

Purpose

This routine is part of the VISA Library (VISA) and its purpose is to read a 16-bit value from the specified

address location.

Description

This routine is part of the VISA Library (VISA) and its purpose is to read a 16-bit value from the specified
address location. The address must be a valid memory address in the current process previously mapped by

a call to viMapAddress().
Parameters
Parameter Name | Direction Description
vi Input Unique logical identifier to a session.
space Input Specifies the address space:
Value Description

VI_A16_SPACE
VI_A24_SPACE
VI_A32_SPACE

A16 address space of VXI/MXI bus
A24 address space of VXI/MXI bus
A32 address space of VXI/MXI bus

| vall6 | Input

| Value read from the bus.

Return Values
No Errors

168

‘Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

6.24 viPeek32

VISA Library

Syntax

viPeek32(viSession vi,
viUInt16 space,
viPUInt32 val32);

Purpose

This routine is part of the VISA Library (VISA) and its purpose is to read a 32-bit value from the specified

address location.

Description

This routine is part of the VISA Library (VISA) and its purpose is to read a 32-bit value from the specified
address location. The address must be a valid memory address in the current process previously mapped by

a call to viMapAddress().
Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
space Input Specifies the address space:

Value
VI _Al6 SPACE
VI_A24 SPACE
VI _A32 SPACE

Description
A16 address space of VXI/MXI bus
A24 address space of VXI/MXI bus
A32 address space of VXI/MXI bus

| val32 | Input

| Value read from the bus.

Return Values
No Errors

169

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.25 viPoke8

Syntax

viPoke8 (viSession vi,
viUInt16 space,
viUInt8 val8);

Purpose
This routine is part of the VISA Library (VISA) and its purpose is to write a 8-bit value from the specified
address location.

Description

This routine is part of the VISA Library (VISA) and its purpose is to write a 8-bit value from the specified
address location. The address must be a valid memory address in the current process previously mapped by
a call to viMapAddress().

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
space Input Specifies the address space:
Value Description
VI_A16 SPACE A16 address space of VXI/MXI bus
VI_A24 SPACE A24 address space of VXI/MXI bus
VI_A32 SPACE A32 address space of VXI/MXI bus
| valg | Input | Value written to the bus. |
Return Values
No Errors

170

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

6.26 viPoke16

VISA Library

Syntax

viPokel6(viSession vi,
viUInt16 space,
viUInt16 vall6);

Purpose

This routine is part of the VISA Library (VISA) and its purpose is to write a 16-bit value from the specified

address location.

Deseription

This routine is part of the VISA Library (VISA) and its purpose is to write a 16-bit value from the specified
address location. The address must be a valid memory address in the current process previously mapped by

a call to viMapAddress().
Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
space Input Specifies the address space:
Value Description

VI_A16_SPACE
VI_A24 SPACE
VI_A32_SPACE

A16 address space of VXI/MXI bus
A24 address space of VXI/MXI bus
A32 address space of VXI/MXI bus

| vall6

| Input

| Value written to the bus.

Return Values
No Errors

171

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

6.27 viPoke32

VISA Library

Syntax

viPoke32(viSession vi,
viUInt16 space,
viUInt32 val32);

Purpose

This routine is part of the VISA Library (VISA) and its purpose is to write a 32-bit value from the specified

address location.

Description

This routine is part of the VISA Library (VISA) and its purpose is to write a 32-bit value from the specified
address location. The address must be a valid memory address in the current process previously mapped by

a call to viMapAddress().
Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
space Input Specifies the address space:
Value Description

VI_A16_SPACE
VI_A24 SPACE
VI_A32_SPACE

A16 address space of VXI/MXI bus
A24 address space of VXI/MXI bus
A32 address space of VXI/MXI bus

| val32 | Input

| Value written to the bus. |

Return Values
No Errors

172

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.28 viPrintf

Syntax

int viPrintf(viSession vi,
viString writeFmt,
[argl,arg2,...]);

Purpose
This routine is part of the VISA Library (VISA) and its purpose is to convert, format and send the
parameters argl, arg?2,...

Description
This routine is part of the VISA Library (VISA) and its purpose is to convert, format, and send the
parameters argl, arg2,... to the device as specified by the format string.

Functionally, this routine works much like the standard C PRINTF routine, but instead will send the output
to the specified device. Within the format string, the following characters can be used to insert special
characters into the output stream:

Format String Description
\n Sends the ASCII LF character. The END identifier is also sent.
\r Sends the ASCII CR character.
\t Sends the ASCII TAB character.
\#HE Sends the ASCII character represented by the octal value ###.
\” Sends the ASCII double quote.
\\ Sends a backslash.

Format conversion of the passed arguments is specified by including a percent symbol (%), followed by
any modifying arguments or flags, and then ended with a format specified character. Format conversion of
arguments is taken in order from left to right, matching each conversion with one argument. Note that
some arguments may also take variable arguments, which are taken from the argument list before the actual
value of the argument. Modifiers occurring between a % symbol and the format character may include:

- Left justify the output within its field length.

Requests that an explicit sign be placed before any numerical
+ conversions. Normally, only negative signs are placed if the number
18 already negative.

Prefix a space to the front of a numerical conversion. This is ignored

space if the + flag is specified.
0 Use zeros rather than spaces to pad the output field.
A number specifying the size of the field width. If this is an asterisk,
field width then the next argument in the argument list is converted to represent

the size of the input field.

173

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

A number of an asterisk is used to define the number of digits to
appear for d,i,0,u,x and X conversions; the number of digits to appear
after a decimal point for e,E, and f conversions; the number of
- significant digits for g and G conversions; or the maximum number of
.precision ; : .
characters written is a s conversion.

If an asterisk is specified, this value is taken from the next argument
in the passed argument list.)

A comma followed by a number or an asterisk indicates that the next
argument in the argument list points to an array of integers. This
array is then output using array size to indicate how many elements in
,array size the array to output. A comma separates each element in the array.

If an asterisk is specified, the array size value is taken from the next
argument in the passed argument list.

Convert the passed argument as a short (h), unsigned long (1), or
double long (L) integer (AXP only).

hLorL

Valid conversion specifiers are:

d,i Converts signed int to a decimal format.
0 Converts and unsigned int to octal format.
u Converts and unsigned int to an unsigned decimal.
Converts and unsigned into a hexadecimal number. Lowercase ‘x’
x,X will use lowercase letters in the output, uppercase ‘X’ will use
uppercase letters in the output.
f Converts a float or double into a decimal floating pomt number.

Converts a float or double into a decimal number represented in
scientific notation,

c Converts an int argument into a single ASCII character.

Converts the pointer to a string argument and outputs the string
pointed to by the argument.

% Writes the percent symbol.
Parameters
Parameter Name | - Direction Description
vi Input Unique logical identifier to a session,
writeFmt Input String describing the format for arguments to be output.
argl,arg?,... Input List of parameters used by the format string.

Return Values
The specified trigger was successfully asserted to

VI_SUCCESS .

- the device.
VI_ERROR_INV_SESSION The given session or object reference is invalid
VI_ERROR _NSUP_OPER The given vi does not support this operation.
VI_ERROR TMO Timeout expired before operation completed.
VI ERROR_RAW WR_PROT VIOL t\rfzil(l)llsafteisn of raw write protocol occurred during

174

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

VI_ERROR_BERR Bus error occurred during transfer.
VI_ERROR_IO Unknown error code

175

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.29 viQueryf

Syntax

it viQueryf{viSession vi,
viString readFmt,
viString writeFmt,
[argl,arg2,..]);

Purpose
This routine is part of the VISA Library (VISA) and its purpose is to perform write and read through a
single operation invocation.

Description
This operation provides a mechanism of "Send, then receive" typical to a command sequence from a
commander device. In this manner, the response generated from the command can be read immediately.

This operation is a combination of the viPrintf() and viScanf () operations. The n arguments corresponding
to the first format string are formatted by using the writeFmt string and then sent to the device. The write
buffer is flushed immediately after the write portion of the operation completes. After these actions, the
response data is read from the device into the remaining parameters (starting from parameter n+1) using the
readFmt string.

Format String . | Description
\n Sends the ASCII LF character. The END identifier is also sent,
\r Sends the ASCII CR character.
\t Sends the ASCII TAB character.
\pHH Sends the ASCII character represented by the octal value ###.
\? Sends the ASCII double quote.
W\ Sends a backslash.

Format conversion of the passed arguments is specified by including a percent symbol (%), followed by
any modifying arguments or flags, and then ended with a format specifier character. Format conversion of
arguments is taken in order from left to right, matching each conversion with one argument. Note that
some arguments may also take variable arguments, which are taken from the argument list before the actual
value of the argument. Modifiers occurring between a % symbol and the format character may include:

Format Code Modifier Description

- Left justify the output within its field length.

Requests that an explicit sign be placed before any numerical
+ conversions. Normally, only negative signs are placed if the
number is already negative.

Prefix a space to the front of a numerical conversion. This is

space ignored if the + flag is specified.

0 Use zeros rather than spaces to pad the output field.

field width A number specifying the size of the field width. If this is an
asterisk, then the next argument in the argument list is converted

176

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

to represent the size of the input field.

.precision

A number of an asterisk is used to define the number of digits to
appear for d,i,o,u,x and X conversions; the number of digits to
appear after a decimal point for e,E, and f conversions; the
number of significant digits for g and G conversions; or the
maximum number of characters written is a s conversion.

If an asterisk is specified, this value is taken from the next
argument in the passed argument list.

,array size

A comma followed by a number or an asterisk indicates that the
next argument in the argument list points to an array of integers.
This array is then output using array size to indicate how many
elements in the array to output. A comma separates each
element in the array.

If an asterisk is specified, the array size value is taken from the
next argument in the passed argument list.

hl orLL

Convert the passed argument as a short (h), unsigned long (1), or
double long (L) integer (AXP only).

Valid conversion specifiers are:

Format

Conversion

Description

d,i

Converts signed int to a decimal format.

(o)

Converts and unsigned int to octal format.

u

Converts and unsigned int to an unsigned decimal.

X, X

Converts and unsigned into a hexadecimal number. Lowercase
x’ will use lowercase letters in the output, uppercase ‘X’ will
use uppercase letters in the output.

Converts a float or double into a decimal floating point number.

Converts a float or double into a decimal number represented in
scientific notation.

Converts an int argument into a single ASCII character.

Converts the pointer to a string argument and outputs the string
pointed to by the argument.

Writes the percent symbol.

Parameters

Parameter Name

Direction

Description

V1

Input

Unique logical identifier to a session.

writeFmt

Input

String describing the format for arguments to be output.

readFmt

Input

String describing the format for arguments to be input.

[argl,arg2....]

Input

Value written to the bus.

Return Values

VI_SUCCESS

VI ERROR_INV_SESSION

The specified trigger was successfully asserted to the
device.
The given session or object reference is invalid

177

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VI_ERROR_NSUP_OPER
VI_ERROR_TMO

VI ERROR_RAW_WR_PROT VIOL

VI_ERROR_RAW RD PROT VIOL

VI_ERROR_BERR
VI_ERROR_IO
VI_SUCCESS_TERM_CHAR
VI_SUCCESS_MAX_CNT

VISA Library

The given vi does not support this operation.

Timeout expired before operation completed.
Violation of raw write protocol occurred during
transfer.

Violation of raw read protocol occurred during
transfer.

Bus error occurred during transfer.

Unknown error code.

The specified termination character was read.

The number of bytes read is equal to count.

178

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.30 viRead

Syntax

int viRead (viSession vi,
viPBuf buf,
viUInt32 cnt,
viPUInt32 retCnt);

Purpose
This routine is part of the VISA Library (VISA) and its purpose is to read data from a device
synchronously.

Description
This routine is part of the VISA Library (VISA) and its purpose is to read data from a device
synchronously.

The synchronous read operation synchronously transfers data. The data read is to be stored in the buffer
represented by buf. This operation returns only when the transfer terminates. Only one synchronous read
operation can occur at any one time.

A viRead() operation can complete successfully if one or more of the following conditions are met: A)
END indicator received. B) Termination character read. C) Number of bytes read is equal to count. It is
possible to have one, two, or all three of these conditions satisfied at the same time.

IF an END indicator is received, THEN viRead() SHALL return VI_SUCCESS, regardless of whether the
termination character is received or number of bytes read is equal to count.

IF no END indicator is received and the termination character is read, THEN viRead() SHALL return
VI_SUCCESS_TERM_CHAR, regardless of whether the number of bytes read is equal to count.

IF no END indicator is received, no termination character is read and the number of bytes read is equal to
count, THEN viRead() SHALL return VI SUCCESS MAX CNT.

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
buf Output Rep.resents the location of a buffer to receive data from a
device.
cnt Input Number of bytes to be read.

Represents the location of an integer that will be set to

retCat Tnput the number of bytes actually transferred.

179

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

Return Values
VI SUCCESS

VI_ERROR_INV_SESSION
VI_ERROR_NSUP_OPER
VI_ERROR_TMO
VI_ERROR_RAW RD PROT VIOL
VI_ERROR_BERR

VI_ERROR_IO
VI_SUCCESS_TERM_CHAR

VI_SUCCESS_MAX_CNT

VISA Library

The specified trigger was successfully asserted to the
device.

The given session or object reference is invalid

The given vi does not support this operation.

Timeout expired before operation completed.

Violation of raw read protocol occurred during transfer.
Bus error occurred during transfer.

Unknown error code

The specified termination character was read.

‘The number of bytes read is equal to count.

180

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.31 viReadSTB

Syntax
it viReadSTB (viSession vi,
viPUlnt16 protocol);

Purpose
This routine is part of the VISA Library (VISA) and its purpose is to read a status byte of the service
request.

Description
This routine is part of the VISA Library (VISA) and its purpose is to read a status byte of the service
request.

This function reads a service request status from a service requester (the message-based device). For
example, on the IEEE 488.2 interface, the message is read by polling devices; for other types of interfaces,
a message 1s sent in response to a service request to retrieve status information. If the status information is
only one byte long, the most significant byte is returned with the zero value. If the service requester does
not respond in the actnal timeout period, VI_ERROR TMO is returned.

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
protocol Input Service request status byte.

Return Values
The specified trigger was successfully asserted to the

VI_SUCCESS .

- device.
VI_ERROR INV_ SESSION The given session or object reference is invalid
VI _ERROR NSUP_ OPER The given vi does not support this operation.
VI ERROR_TMO Timeout expired before operation completed.
VI_ERROR_RAW WR_PROT VIOL t\rfsllzlsafte]fn of raw write protocol occurred during
VI_ERROR_RAW RD PROT VIOL X;?llsi':ron of raw read protocol occurred during
VI_ERROR BERR Bus error occurred during transfer.
VI_ERROR IO Unknown error code.

181

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.32 viScanf

Syntax

int viScanf (viSession vi,
viString readFmt,
[argl.,arg2,...]);

Purpose
This routine is part of the VISA Library (VISA) and its purpose is to read, convert and format data using
the format specifier.

Description
This routine is part of the VISA Library (VISA) and its purpose is to read, convert and format data using
the format specifier. Store the formatted data in the argl, arg2... parameters.

This function receives data from a device, formats it by using the format string, and stores the resultant data
in the arg parameter list. The format string can have format specifier sequences, white characters, and
ordinary characters. The white characters-blank, vertical tabs, horizontal tabs, form feeds, new
line/linefeed, and carriage return- are ignored except in the case of %c and %[]. All other ordinary
characters except % should match the next character read from the device.

The format string consists of a %, followed by optional modifier flags, followed by one of the format codes
in that sequence. It is of the form

%[modifier]format code

where the optional modifier describes the data format, while format code indicates the nature of data (data
type). One and only one format code should be performed at the specifier sequence. A format
specification directs the conversion to the next input arg. The results of the conversion are placed in the
variable that the corresponding argument points to, unless the * assignment-suppressing character is given.
In such a case, no arg is used and the results are ignored.

The viScanf() operation accepts input until the END indicator is read or all the format specifiers in the
readFmt string are satisfied. Thus, detecting an END indicator before the readFmt string is fully consumed
will result in ignoring the rest of the format string. Also, if some data remains in the buffer after all format
specifiers in the readFmt string are satisfied, the data will be kept in the buffer and will be used by the next
viScanf operation.

The viRead() operation is used for the actual low-level read from the device. Therefore, viRead() should
not be used in the same session with formatted I/O operations. Also, if multiple sessions using formatted
I/O resources are connected to the same device, the actual low-level reads must be synchronized between
themselves.

182

Windows 2000 Device Driver/API

2962 PCI Grand Interconnect

VISA Library

Some of the format modifiers that are allowed include:

Format Code Modifier

Description

*

Assignment suppressing character.

field width

A number specifying the size of the field width. If this is an
asterisk, then the next argument in the argument list is converted to
represent the size of the input field.

,array size

A comma followed by a number or an asterisk indicates that the
next argument in the argument list points to an array of integers.
This array is then filled using array size numbers from the input
stream.

If an asterisk is specified, the array size value is taken from the
next argument in the passed argument list,

[code]

Indicates that code is to be used as a terminating character for the
input string. It must be a single character enclosed by square
brackets.

hl, orL

Convert the passed argument as a short (h), unsigned long (1), or
double long (L) integer (AXP only).

Valid conversion specifiers are:

Format Conversion Description
d Converts a decimal integer. The argument is a pointer to an int.
Converts an integer according to its digits. A leading 0 will result in
; octal conversion, a 0X will result in hex conversion, otherwise a
default of decimal conversion is used. The conversion type must be a
pointer to an int.
o} Converts an octal integer. Argument is a pointer to an int.
< Converts a hexadecimal number. Leading ‘0X’ is ignored if it exists.
Argument must be a pointer to an int.
efg Conver.t a floating point or scientific notation number. Argument must
” be a pointer to a float.
c Converse a single character. Argument must be a pointer to a char.
s Converts a character string. Argument must be a pointer to a char with
enough space to hold the entire string.
Parameters
Parameter. Name Direction Description
vi Input Unique logical identifier to a session.
readFmt Input String describing the format for arguments.
[arglarg2,..] Input A list with the variablfz # pf parameters into which the data is
’ ’ read and the format string is applied.

Return Values

VI_SUCCESS

The specified trigger was successfully asserted to the
device.

183

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VI_ERROR_INV_SESSION
VI_ERROR_NSUP_OPER
VI_ERROR_TMO
VI_ERROR_RAW RD PROT VIOL
VI_ERROR_BERR

VI_ERROR_IO
VI_SUCCESS_TERM_CHAR

VI_SUCCESS_MAX CNT

VISA Library

The given session or object reference is invalid

The given vi does not support this operation.

Timeout expired before operation completed.

Violation of raw read protocol occurred during transfer.
Bus error occurred during transfer,

Unknown error code

The specified termination character was read.

The number of bytes read is equal to count.

184

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.33 viSetAttribute

Syntax

int viSetAttribute (ViSession vi,
ViAttr attrName,
ViAttrState attrValue);

Purpose

This routine is part of the VISA Library (VISA) and its purpose is to set the state of a resource attribute.

Description
This routine is part of the VISA Library (VISA) and its purpose is to set the state of a resource attribute.

This function modifies the state of a specified attribute on the specified session.

Parameters
Parameter Name | Direction Description
vi Input Unique logical identifier to a session.
attrName Input Resource attribute for which the state query is made.
The state of the queried attribute for a specified resource. The
attrValue Input interpretation of the returned value is defined by the
individual resource.

Return Values

VI_SUCCESS g:fi ngemfled trigger was successfully asserted to the
VI_ERROR _INV_SESSION The given session or object reference is invalid

VI ERROR NSUP ATTR STATE Although the speqﬁed attrlbuffe state is valie, it is not
- - - - supported by this implementation.

VI_ERROR ATTR READONLY The specified attribute is read-only.

The specified attribute is not defined by the referenced

VI_ERROR NSUP ATTR . e
— - = session, event, or find list.

185

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

6.34 viSPrintf

VISA Library

Syntax
mt viSPrintf(viSession vi,
viBuf buf,

viString writeFmt,

[argl,arg2,...]);

Purpose

This routine is part of the VISA Library (VISA) and its purpose is to format write to a user-specified buffer
using a variable number of arguments.

Description

This operation is similar to viPrintf (), except that the output is not written to the device; it is written to the
user-specified buffer. This output buffer will be NULL terminated.

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
buf Output resulting output string
writeFmt Input String describing the format for arguments to be output.
argl,arg?,... Input List of parameters used by the format string.
Return Values
VI SUCCESS The specified trigger was successfully asserted to

VI_ERROR_INV_FMT

the device.
A format specifier in the string is invalid.

186

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

6.33 viSetAttribute

VISA Library

Syntax

int viSetAttribute (ViSession vi,

ViAttr attrName,

ViAttrState attrValue);

Purpose

This routine is part of the VISA Library (VISA) and its purpose is to set the state of a resource attribute.

Description

This routine is part of the VISA Library (VISA) and its purpose is to set the state of a resource attribute,

This function modifies the state of a specified attribute on the specified session.

Parameters
Parameter Name Direction Pescription
vi Input Unique logical identifier to a session.
attrName Input Resource atiribute for which the state query is made.
The state of the queried attribute for a specified resource. The
attrValue Input interpretation of the returned value is defined by the
individual resource.
Return Values
VI_SUCCESS The specified trigger was successfully asserted to the

VI_ERROR_INV_SESSION

VI_ERROR NSUP_ATTR_STATE
VI_ERROR_ATTR_READONLY

VI_ERROR_NSUP_ATTR

device.

The given session or object reference is invalid
Although the specified attribute state is valie, it is not
supported by this implementation.

The specified attribute is read-only.

The specified attribute is not defined by the referenced
session, event, or find list.

185

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.34 viSPrintf

Syntax

int viSPrintf(viSession vi,
viBuf buf,
viString writeFmt,
[argl,arg2,..]);

Purpose
This routine is part of the VISA Library (VISA) and its purpose is to format write to a user-specified buffer
using a variable number of arguments.

Description
This operation is similar to viPrintf (), except that the output is not written to the device; it is written to the
user-specified buffer. This output buffer will be NULL terminated.

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
buf Output resulting output string
writeFmt Input String describing the format for arguments to be output.
argl,arg?,... Input List of parameters used by the format string.

Return Values
VI SUCCESS The sp§01ﬁed trigger was successfully asserted to
- the device.

VI_ERROR _INV_FMT A format specifier in the string is invalid.

186

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.35 viSScanf

Syntax

int viSScanf (viSession vi,
viBuf buf,
viString readFmt,

[argl,arg2,...]);

Purpose
This routine is part of the VISA Library (VISA) and its purpose is to format read from a user-specified
buffer using a variable number of arguments.

Description
This routine is part of the VISA Library (VISA) and its purpose is to read from a user-specified buffer
rather than a device..

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
buf Output input string to be parsed
readFmt Input String describing the format for arguments to be input.
argl,arg2,... Input List of parameters used by the format string.

Return Values
VI SUCCESS 'cll"il\e,:icsepemfled trigger was successfully asserted to the

VI ERROR INV FMT A format specifier in the string in invalid.

187

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

6.36 viStatusDesc

VISA Library

Syntax

int viStatusDesc (viSession vi,

viStatus status,
viPString desc);

Purpose

This routine is part of the VISA Library (VISA) and its purpose is to return a user readable string that
describes the passed status code.

Description

This routine is part of the VISA Library (VISA) and its purpose is to return a user readable string that
describes the passed status code.

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
status Input Status code to interpret.
desc Input The text interpretation of the status code passed to this function.
Return Values
VI_SUCCESS dTilji Cssemfled trigger was successfully asserted to the
VI_ WARN UNKOWN _STATUS Unknown status.

188

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.37 viUnmapAddress

Syntax
int viUnmapAddress (viSession vi);

Purpose
This routine is part of the VISA Library (VISA) and its purpose is to UNmap memory space.

Description
This routine is part of the VISA Library (VISA) and its purpose is to UNmap memory space.

This function unmaps the memory previously mapped by viMapAddress().

Parameters
Parameter Name | Direction Description
vi Input Unique logical identifier to a session.

Return Values
The specified trigger was successfully asserted to the

VI _SUCCESS :

- device.
VI_ERROR INV_ SESSION The given session or object reference is invalid
VI_ERROR NSUP_OPER The given vi does not support this operation.

VI_ERROR_WINDOW NMAPPED There is no window mapped to this session.

189

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

6.38 viVPrintf

VISA Library

Syntax

int viVPrintf (viSession vi,
viString writeFmt,
[argl,arg2,...]);

Purpose

This routine is part of the VISA Library (VISA) and its purpose is to convert, format and send params to

the device as specified by the format string.

Description

This routine is part of the VISA Library (VISA) and its purpose is to convert, format and send params to

the device as specified by the format string.

This function is identical to viPrintf, except that the viVAList parameters list provides the parameters rather
than separate arg parameters. For a complete description of the use of this function, please see the section

regarding viPrintf.

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
writeFmt Input String describing the format for arguments.
A list containing the variable number of parameters on which
argl,arg2,... Input the format string is applied The formatted data is written to
the specified device.

Return Values
VI_SUCCESS

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT
VI_ERROR_NSUP_OPER
VI_ERROR_INV_PROT
VI_ERROR_TMO
VI_ERROR_RAW_WR_PROT VIOL
VI_ERROR_RAW RD PROT VIOL
VI_ERROR_INP_PROT VIOL
VI_ERROR_BERR
VI_ERROR_LINE_IN_USE

VI_ERROR_NCIC

VI_ERROR_NLISTENERS

The specified trigger was successfully asserted to the
device.

The given session or object reference is invalid

(both are the same value).

The given vi does not support this operation.

The protocol specified is invalid.

Timeout expired before operation completed.

Violation of raw write protocol occurred during transfer.
Violation of raw read protocol occurred during transfer.
Device reported an input protocol error during transfer.
Bus error occurred during transfer.

The specified trigger line is currently in use.

The interface associated with the given vi is not
currently the controller in charge.

No Listeners condition is detected (both NRFD and
NDAC are deasserted).

190

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.39 viVQueryf

Syntax

int viVQueryf (viSession vi,
viString writeFmit,
viString readFmt,
[argl,arg2,...]);

Purpose
This routine is part of the VISA Library (VISA) and its purpose is to perform a formatted write and read
through a single operation invocation.

Description

This operation is similar to viQueryf(), except that the viVAList parameters list provides the parameters
rather than the separate arg parameter list.

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
writeFmt Input String describing the format for arguments.
readFmt Input String describing the format for arguments to be output.
argl,arg2,... Input List of parameters used by the format string.

Return Values

VI_SUCCESS The specified trigger was successfully asserted to the

device.
VI_ERROR INV_SESSION The given session or object reference is invalid
VI_ERROR_NSUP_OPER The given vi does not support this operation.
VI_ERROR TMO Timeout expired before operation completed.
VI_ERROR_RAW WR_PROT VIOL X;?llsaf:;)n of raw write protocol occurred during
VI ERROR_RAW _RD_PROT VIOL X;:)llsafzfn of raw read protocol occurred during
VI_ERROR BERR Bus error occurred during transfer.
VI_ERROR IO Unknown error code.
VI_SUCCESS_TERM_CHAR The specified termination character was read.
VI_SUCCESS_MAX CNT The number of bytes read is equal to count.

191

Windows 2000 Device Driver/API

2962 PCI Grand Interconnect

6.40 viVScanf

VISA Library

Syntax

int viVScanf (viSession vi,
viString readFmt,
[argl,arg2,...]);

Purpose

This routine is part of the VISA Library (VISA) and its purpose is to read, convert and format data using

the format specifier.

Description

This routine is part of the VISA Library (VISA) and its purpose is to read, convert and format data using
the format specifier. Store the formatted data in params.

This function is similar to viScanf, except that the viVAList parameters list provides parameters rather than
separate arg parameters. For more detailed information on viScanf.

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
readFmt Input String describing the format for arguments.
| are? Input A list with the variable # of parameters into which the data
UELALS,- P is read and the format string is applied.
Return Values
VI SUCCESS The specified trigger was successfully asserted to the

VI_ERROR_INV_SESSION
VI_ERROR_NSUP_OPER

VI_ERROR_TMO

VI_ERROR_RAW _RD PROT VIOL

VI_ERROR_BERR
VI_ERROR_IO

VI_SUCCESS_TERM_CHAR
VI_SUCCESS_MAX_CNT

device.

The given session or object reference is invalid

The given vi does not support this operation.

Timeout expired before operation completed.

Violation of raw read protocol occurred during transfer.
Bus error occurred during transfer.

Unknown error code

The specified termination character was read.

The number of bytes read is equal to count.

192

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.41 viVSPrintf

Syntax

int viVSPrintf (viSession vi,
viPBuf buf,
viString writeFmit,

[argl,arg2,...]);

Purpose
This routine is part of the VISA Library (VISA) and its purpose is to format write to the device using a
variable

Description
This operation is similar to viVPrintf(), except that the output is not written to the device; it is written to the
user-specified buffer. This output buffer will be NULL terminated.

Parameters
Parameter Nanie Diréction Description
vi Input Unique logical identifier to a session.
buf Output Output string
writeFmt Input String describing the format for arguments.
A list containing the vartable number of parameters on which
argl,arg?,... Input the format string is applied The formatted data is written to
the specified device.

Return Values
The specified trigger was successfully asserted to

VI_SUCCESS .

- the device.
VI ERROR INV_SESSION The given session or object reference is invalid
VI_ERROR_NSUP OPER The given vi does not support this operation.
VI ERROR TMO Timeout expired before operation completed.
VI_ERROR_RAW WR_PROT VIOL X;gg:fn of raw write protocol occurred during
VI_ERROR_BERR Bus error occurred during transfer.
VI_ERROR_IO Unknown error code

193

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.42 viVSScanf

Syntax

int viVSScanf (viSession vi,
viPBuf buf,
viString readFmit,
[argl,arg2,...]);

Purpose
This routine is part of the VISA Library (VISA) and its purpose is to format read from a user-specified
buffer using a variable argument list arguments,

Description
This operation is similar to viVScanf (), except that the data is read from a user-specified buffer rather than
a device.

Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
buf Input Input string to parse
readFmt Input String describing the format for arguments.
A list containing the variable number of parameters on
argl,arg?,... Input which the format string is applied The formatted data is

written to the specified device.

Return Values

VI SUCCESS The spgmfled trigger was successfully asserted to
- the device.

VI_ERROR INV_SESSION The given session or object reference is invalid

VI_ERROR _NSUP OPER The given vi does not support this operation.

VI_ERROR_TMO Timeout expired before operation completed.

VI ERROR_RAW WR_PROT VIOL t\r/;(r)lls'z;tc};)n of raw write protocol occwred during

VI ERROR_BERR Bus error occurred during transfer.

VI ERROR IO Unknown error code

194

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

VISA Library

6.43 viVxiCommandQuery

Syntax
int viVxiCommandQuery (viSession vi,
viUInt16 mode,
viUInt32 cmd,
viUInt32 response);
Purpose

This routine is part of the VISA Library (VISA) and its purpose is to send the device a miscellaneous
command or query and/or retrieve the response to a previous query.

Description
Parameters
Parameter Name Direction Description
vi Input Unique logical identifier to a session.
mode Input
cmd Input
response Input

Return Values

VI_SUCCESS The specified trigger was successfully asserted to the

device.
VI_ERROR INV SESSION The given session or object reference is invalid
VI_ERROR_NSUP OPER The given vi does not support this operation.
VI_ERROR_TMO Timeout expired before operation completed.
VI ERROR_RAW RD_PROT VIOL Z;gl:f’z;m of raw read protocol occurred during
VI_ERROR BERR Bus error occurred during transfer.
VI_SUCCESS_TERM_CHAR The specified termination character was read.
VI_SUCCESS_MAX CNT The number of bytes read is equal to count.
VI_ERROR IO Unknown error code.

195

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

6.44 viWrite

VISA Library

Syntax

int viWrite (viSession vi,
viBuf buf,
viUInt32 cnt,
viPUInt32 retent);

Purpose

This routine is part of the VISA Library (VISA) and its purpose is to write data to a device synchronously.

Description

This routine is part of the VISA Library (VISA) and its purpose is to write data to a device synchronously.

The write operation synchronously transfers data. The data to be written is in the buffer represented by buf,
This operation returns only when the transfer terminates. Only one synchronous write operation can occur

at any one time.

Parameters
Parameter Name Direction Description

vi Input Unique logical identifier to a session.
Represents the location of a data block to be sent to a

buf Input .
device (constant).

cnt Input Number of bytes to be written.

retent Output Represents the location of an integer that will be set to

the number of bytes actually transferred.

Return Values
VI _SUCCESS

VI_ERROR_INV_SESSION
VI_ERROR_NSUP_OPER
VI_ERROR_TMO
VI_ERROR_RAW_WR_PROT VIOL
VI_ERROR_BERR

VI_ERROR_IO

The specified trigger was successfully asserted to the
device.

The given session or object reference is invalid

The given vi does not support this operation.

Timeout expired before operation completed.

Violation of raw write protocol occurred during transfer.
Bus error occurred during transfer.

Unknown error code.

196

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

KSC List Generation Interface Library

7 KSC List Generation Interface Library

7.1 Library Usage

The List Generation Library is implemented as a set of linkable routines in the KSCAPI library. The list
building routines are prototyped in the “kscapi.h” file. Additionally, a set up “C” macros is also available
to create inline lists.

The list generation routines are provided to help in the creation of lists using a more structured convention.
Creating a list involves first allocating memory to store the list and then calling KSC_init_list. This routine
will return back a pointer to a structure of type ksc_list that will be used by all of the other list generating
routines. If the user is building multiple lists, the user must provide storage for each of the lists and call
KSC _init_list for each list. The user may build multiple lists concurrently as all information about the
current state of each list is maintained by the structure allocated by KSC init list. The list must be
allocated on a long word boundary.

The user calls the individual functions to “compile” the instruction list into the user provided list memory.
Each callable function in the library is usually associated with one particular command instruction. There
exist functions that implement standard IF...ELSE...ENDIF and SWITCH...CASE...ENDCASE properties
found in most high-level languages. The list-generating library keeps track of calculating offsets and
inserting the proper commands into the list, making such IF and CASE blocks much easier to develop.

Upon completion of making a list, KSC_finish should be called to clean up the list and check for any
possible errors in the list. The routine KSC_dump_list can be called to display the compiled list to standard
output.

A sample program that creates a list follows. This list does not perform any real functionality, and is
provided merely as an example for list creation. Do not attempt to actually execute the list!

/*
TEST PROGRAM
This program will demonstrates the use of the List
Generation functions
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "../include/ksc_genlist.h"

main ()

{

/* Variable defs */

short *mem; /* Our memory buffer */

struct ksc_list *list; /* Our list definition structure
*/

int size; /* Our value of how big list is
*/

197

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

KSC List Generation Interface Library

/*

* Begin here

*/

mem = malloc(1024); /* Allocate a 1024 byte
buffer */

KSC_init_list(mem,1024,&list);

/*
* List code begins here

*/

KSC_bdcast trigger (list);
KSC_blOCk_rW(list,ABORT,WSB,DECADR,15,33,READ,INTERNAL,
Ox7F7F7F, 0x252525) ;

KSC_if(list,EQ,OXFFFFFF,OX353535);
KSC_execute msg_dev(list,0x75,0,1,20,50,"A simple
text block");
KSC gen demand (list,200);
KSC_endif (list);

KSC_inline_rw(list,ABORT,WSB,DECADR,15,33,WRITE,INTERNAL,OX13300)

i

KSC_inline_w(list,ABORT,WSB,DECADR,15,33,INTERNAL,OX22222,0X53535
3);
KSC_if(list,EQ,OXFFFF,0X616161);
KSC_load_test_val(list, 15,WS16,0x7A7A7A);
KSC mark list(list);
KSC_else(list);
KSC slave trigger(list, 33, 1,1,0,1,0);
KSC_if(list,EQ,0XFFFF,0X616161);
KSC_load test val(list,
15,WS16,0x7A7A7A) ;
KSC_mark list(list);
KSC else(list);
KSC_slave_trigger(list, 33, 1,1,0,1,0);
KSC_store_ flag(list, 0x5050) ;
KSC _endif (list) ;
KSC_store_flag(list, 0x5050);
KSC_endif (list) ;

KSC_time_stamp (list);

KSC_switch(list, OxFAFAFA) ;
KSC case(list,0x101010) ;
KSC_load_test _val(list, 15,WS16,0x7A7A7A) ;
KSC mark list(list);
KSC_if (list,EQ, OXFFFFFF, 0x353535) ;

198

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

KSC List Generation Interface Library

output)

KSC_execute_msg_dev(list,0x75,0,1,20,50,"A simple text block");

KSC_gen demand(lisgt,200);
KSC_endif (list);

KSC case(list,0x202020);
KSC_load_test_val(list, 15,WS16,0x717171);
KSC mark_list(list);

KSC case(list,0x303030);
KSC_load_test val(list, 15,WS16,0x2b2b2b);
KSC_mark list (list);

KSC endcase (list);
KSC_end list(list);

/*
* List code ends here

*/

KSC_finish(list);
/*

* Write the list out in a symbolic fashion (see following

*/
KSC _dump_list(mem,0,1); /* Display the built list */

This code creates the following output list:

0000 8041 BRDCST TRIG
0000
0000
0000
0008 47AE BLK_RW ab:0 ws:3 am:1 chas_adr:0F adr mod:21 rw:1 int:1

LOC DATA CODE

addr:007F7F7F tr cnt:00252525

co021
7F7F
007F
2525
0025
0014 8084 IF cond:0 mask:00FFFFFF test:00353535
0000
FFFF
0QFF
3535

199

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

KSC List Generation Interface Library

0022
rply_

003E
0042

0046

004A

0052

O005E

006C

0074

0078

0035
002A
8090

EXEC_MSG_DEV addr:75 term:0 rply:1 time_out:0014

Ing:32

8075
0014
1432
2041
6973
706D
656C
7420
7865
2074
6C62
636F
006B
8091
0000
8102
0ocCs
8083
0000

478E

8021
3300
0001
47CE

8021
2222
0002
5353
0053
8085
0001
FFFF
0000
6161
0061
0014
8082
800F
7TATA
007A
8080
0000
8083

cmd Ing:14 [A simple text block]

RESUME_MSG_DEV
GEN_DEMAND pattern:C8
END_OF_ SUBLIST

END IF

INL_RW ab:0 ws:3 am:1 chas_adr:0F adr mod:21 rw:0 int:1
addr:00013300

INLN_W ab:0 ws:3 am:1 chas_adr:0F adr mod:21 rw:0 int:1
addr:00022222 data:00535353

IF(ELSE) cond:1 mask:0000FFFF test:00616161

LD_TEST_ VAL add mod:0F ws:2 addr:007A7A7A

MRK_LST ADR

END_OF_ SUBLIST

200

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

KSC List Generation Interface Library

0000
007C 0042 ELSE
007E 8040 ADDR_SLV_TRIG chas_adr:21 TTL: 1 ECL:1 FP:0 list:1l
timst:0
0021
1101
0000
0086 8085 IF (ELSE) cond:1 mask:0000FFFF test:00616161
0001
FFFF
0000
6161
0061
0014
0094 8082 LD _TEST VAL add mod:0F ws:2 addr:007A7A7A
800F
TAT7A
007A
009C 8080 MRK_LST ADR
0000
00AO0 8083 END_OF SUBLIST
0000
00A4 0012 ELSE
00A6 8040 ADDR_SLV_TRIG chasmadr:21 TTL: 1 ECL:1 FP:0 list:1
timst:0
0021
1101
0000
O00OAE 80F8 STO_FLG flag:5050
5050
00B2 8083 END_OF_ SUBLIST
0000

END IF
00B6 80F8 STO FLG flag:5050
5050
00BA 8083 END OF SUBLIST
0000
END_IF
00BE 8002 READ TIME STAMP
0000

00C2 8086 SWITCH mask:00FAFAFA
007E
FAFA
00FA
00CA 1010 CASE test_val:00101010
0010
004A
00DO0 8082 LD_TEST VAL add mod:0F ws:2 addr:007A7A7A
800F
TATA

201

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

KSC List Generation Interface Library

007A
00D8 8080 MRK LST ADR
0000
00DC 8084 IF cond:0 mask:00FFFFFF test:00353535
0000
FFFF
00FF
3535
0035
002A
O0EA 8090 EXEC_MSG_DEV addr:75 term:0 rply:1 time_out:0014
rply 1lng:32
cmd_1ng:14 [A simple text block]
8075
0014
1432
2041
6973
706D
656C
7420
7865
2074
6C62
636F
006B
0106 8091 RESUME_MSG_DEV
0000
010A 8102 GEN_DEMAND pattern:C8
oocs
010E 8083 END_OF_ SUBLIST
0000
END IF
0112 8083 END_OF SUBLIST
0000
0116 2020 CASE test val:00202020
0020
0014
011C 8082 LD _TEST VAL add mod:0F ws:2 addr:00717171
800F
7171
0071
0124 8080 MRK_LST ADR
0000
0128 8083 END_ OF_ SUBLIST
0000
012C 3030 CASE test_val:00303030
0030
0000
0132 8082 LD_TEST VAL add _mod:0F ws:2 addr:002B2B2B
800F

202

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

KSC List Generation Interface Library

013A

013E

0142

0146

2B2B
002B
8080
0000
8083
0000

8081
0000
8000
0000

MRK_LST ADR
END_OF SUBLIST

END_CASE
END OF LIST

HALT

203

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

7.2 KSC_bdcast_trigger

KSC List Generation Interface Library

Syntax

int KSC_bdcast_trigger (struct ksc_list *list_base);

Purpose

This adds a Broadcast Trigger instruction to the passed list.

Description

This routine adds the Broadcast Trigger instruction to the end of the list defined by list_base.

Parameters

Parameter Name

Direction

Deseription

list base

Input

Used by all of the List Generation routines. It is

created by calling KSC init list.

Return Values

The most common error codes are listed here. For a comprehensive list, please
refer to the Error Codes section of this manual.

KSC_SUCCESS
KSC_NOLISTMEM

Normal, successful return.
Not enough list memory for this instruction.

204

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

7.3 KSC_block_rw

KSC List Generation Interface Library

Syntax

int KSC block rw (struct ksc_list *list_base

int abort,

int word_sz,
int acc_mod,
int ch_addr,
int addr_mod,
nt rw,

mt it_cmd,
int address,

int trans_count);

Purpose

This routine adds a Block Read/Write instruction to the passed list.

Description
This routine will insert a Block Read/Write VXI/VME instruction at the end of the passed list given by
list base.
Parameters
Parameter Name Direction Description
list base Input Usqd by all qf ‘Fhe .List Generation routines. It is created by
- calling KSC init_list.
abort input Abort Disable flag. Set this to one of ABORT (regular
abort) or ABORT D (disable the abort).
word_sz input Word size. Set this to one of WS8, WS16, or WS32.
acc mod input Access mode. Set this to one of INCADR, DECADR, or
— RETADR.
. Chassis address. Set this to a valid chassis address number
ch addr input (0-127).
addr mod input Access mode. Set this to one of INCADR, DECADR, or
- RETADR.
. Read/Write mode. Set this to the type of operation to be
w mnput performed, READ for a read, or WRITE for a write.
VXI bus command or slot-0 command. Set this to one of
it_cmd input INTERNAL for a slot-0 command or EXTERNAL for a bus
command.
address input A 32 bit VXI address.
trans_count input 32-bit transfer count.

205

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

KSC List Generation Interface Library

Return Values

The most common error codes are listed here. For a comprehensive list, please
refer to the Error Codes section of this manual.

KSC SUCCESS Normal, successful return.
KSC_NOLISTMEM Not enough list memory for this instruction.

206

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

KSC List Generation Interface Library

7.4 KSC_dump _list

Syntax
int KSC dump_list (mem,
int size,
int dump);
Purpose

This routine displays an already built list in a readable format.

Description
This routine will display an already built list stored in memory. The list should end with a HALT
instruction.

The display will give for each instruction its location (as a byte offset), instruction code, and the actual
instruction and data. If the data value is set to a non-zero value, you will also receive each additional word
of data for the instruction.

IF and CASE blocks will be indented accordingly. Currently, no nesting of CASE blocks is supported, and
up to 10 nested IF blocks are supported.

If the routine encounters an invalid opcode, it will be displayed and the routine will continue, atterpting to
parse the next word as an opcode.

Parameters
Parameter Name | Direction Description

mem Input This should be a pointer to the start of the list to be displayed.
This is set to the maximum size of the buffer, in bytes. The
routine will display all bytes up to and including mem+size bytes.

stze tnput If size is specified as zero, the routine will display all instructions
up to a HALT instruction.
This is a flag used to set the display format for the instruction List,
. If set to a value of zero, the display will only show the beginning
dump input

of each command. If set to any other value, the display will also
include all additional words of data for each command.

Return Values

The most common error codes are listed here. For a comprehensive list, please
refer to the Error Codes section of this manual.

KSC_SUCCESS Normal, successful return.

207

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

7.5 KSC_end_list

KSC List Generation Interface Library

Syntax

int KSC_end_list(struct ksc_list *list base);

Purpose

This will add an EOL (End of List) instruction to the list.

Deseription

This routine will insert an End of List (EOL) instruction at the end of the passed list given by list_base.

Parameters

Parameter Name

Direction

Description

list_base

Input

Used by all of the List Generation routines. It is
created by calling KSC_init_list.

Return Values

The most common error codes are listed here. For a comprehensive list, please
refer to the Error Codes section of this manual.

KSC_SUCCESS
KSC_NOLISTMEM

Normal, successful return.
Not enough list memory for this instruction.

208

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

KSC List Generation Interface Library

7.6 KSC_finish

Syntax

int KSC_finish(struct ksc_list *list_base);

Purpose
End the creation of a list and free allocated list building resources.

Description
This routine should be called at the completion of creating a list. It will check to insure that all IF and
CASE blocks are properly completed.

A halt instruction is automatically added to the end of the list and the list_base memory is then released
back to the system. You cannot use the list_base value after calling this routine.

Parameters
Parameter Name Direction Description
list base Tnput Useq by all qf .the.List Generation routines. It is created by
~ calling KSC init_list.

Return Values
The most common error codes are listed here. For a comprehensive list, please
refer to the Error Codes section of this manual.

KSC_SUCCESS Normal, successful return.
KSC NOLISTMEM Not enough list memory for this instruction.

209

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

7.7 KSC_gen_demand

KSC List Generation Interface Library

Syntax

int KSC_gen_demand(struct ksc_list *list_base,
int pattern);

Purpose

This places a Generate Demand instruction into the list.

Description

This routine will insert a Generate Demand instruction at the end of the passed list given by list base.

Parameters
Parameter Name Direction Description
list base Tnput Usefl by all of Fhe .List Generation routines. It is created by
- calling KSC init list.
pattern Input Demand pattern value (0-255).

Return Values

refer to the Error Codes section of this manual.

KSC_SUCCESS

KSC _NOLISTMEM

The most common error codes are listed here. For a comprehensive list, please

Normal, successful return.

Not enough list memory for this instruction.

210

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

KSC List Generation Interface Library

7.8 KSC_init_list

Syntax
mt KSC init list (*mem_base,

int size,

struct ksc_list *list_base);
Purpose

Prepare allocated memory for list generation.

Description

This routine must be called before using any of the other list generating routines. It will allocate a structure
of type ksc_list, initialize it, and then return its location back in list base. You will need this value for calls
to any of the other list generating functions.

You may work on more than one list at a time. Each list will have its own list_base value.

At the end of creating a list, you must call KSC_finish to cleanup the list and remove the allocated structure
from memory,

Parameters
Parameter Name | Direction Description
mem base Tnput This is a pointer to the start of memory where you want the
- list to be built. The memory must already be allocated.
. This is the size, in bytes, of the allocated memory starting at
size Input
mem_base.
list base Tnput Useq by all o_f Fhe .List Generation routines. It is created by
- calling KSC_init list.

Return Values
The most common error codes are listed here. For a comprehensive list, please
refer to the Error Codes section of this manual.

KSC_SUCCESS Normal, successful return.
KSC BAD_ARD Bad arguments passed.
KSC _NOLISTMEM Not enough list memory for this instruction.

211

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

KSC List Generation Interface Library

7.9 KSC_inline_rw

Syntax
int KSC_inline_rw (struct ksc_list *list base,
int abort,
int word_sz,
int acc_mod,
int ch addr,
int addr mod,
int rw,
intit_cmd,
int address);

Purpose
This places an Inline Read/Write VXI/VME instruction into the list.

Description
This routine will insert an Inline Read/Write VXI/VME instruction at the end of the passed list given by
list base.

Parameters
Parameter Name Direction Description
list base Input Used by all of t’he List Generation routines. It is created by
- calling KSC_init list.
abort inout Abort Disable flag. Set this to one of ABORT (regular
P abort) or ABORT D (disable the abort).
word sz input Word size. Set this to one of WS8, WS16, or WS32.
ace mod input Access mode. Set this to one of INCADR, DECADR, or
— RETADR.
. Chassis address. Set this to a valid chassis address number
ch addr mput (0-127).
addr mod input Access mode. Set this to one of INCADR, DECADR, or
= RETADR.
. Read/Write mode. Set this to the type of operation to be
w mnput performed, READ for a read, or WRITE for a write.
VXI bus command or slot-0 command. Set this to one of
it_cmd input INTERNAL for a slot-0 command or EXTERNAL for a bus
command.
address input A 32 bit VXI address.

Return Values
The most common error codes are listed here. For a comprehensive list, please
refer to the Error Codes section of this manual.

212

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

KSC List Generation Interface Library

KSC SUCCESS Normal, successful return.
KSC_NOLISTMEM Not enough list memory for this instruction.

213

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

7.10 KSC_inline_w

KSC List Generation Interface Library

Syntax

int KSC_inline_w (struct ksc_list *list_base,

int abort,

int word_sz,
int acc_mod,
int ch _addr,
int addr_mod,
int rw,

int it_cmd,
int address,
int data);

Purpose

This places an Inline Write VXI/VME instruction into the list.

Description
This routine will insert an Inline Write VXI/VME instruction at the end of the passed list given by
list base.
Parameters
Parameter Name | Direction Description
list base Tnput UseFi by all qf .the' List Generation routines. It is created by
- calling KSC init_list.
abort input Abort Disable flag. Set this to one of ABORT (regular abort)
or ABORT_D (disable the abort).
word sz input Word size. Set this to one of WSS, WS16, or WS32,
ace mod input Access mode. Set this to one of INCADR, DECADR, or
- RETADR.
] . Chassis address. Set this to a valid chassis address number (0-
ch_addr input 127).
addr mod input Access mode. Set this to one of INCADR, DECADR, or
- RETADR.
)) Read/Write mode. Set this to the type of operation to be
v mnput performed, READ for a read, or WRITE for a write.
VXI bus command or slot-0 command. Set this to one of
it cmd input INTERNAL for a slot-0 command or EXTERNAL for a bus
command.
address input A 32 bit VXTI address.
data input The actual data to be written.

214

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

KSC List Generation Interface Library

Return Values

The most common error codes are listed here. For a comprehensive list, please
refer to the Error Codes section of this manual.

KSC SUCCESS Normal, successful return.
KSC_NOLISTMEM Not enough list memory for this instruction.

215

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

KSC List Generation Interface Library

7.11 KSC_slave_trigger

Syntax
int KSC_slave_trigger (struct ksc_list *list_base,
int ch addr,
int ttl trig,
int ecl trig,
int fp_trig,
int list,
int timst);

Purpose
This places an Addressed Slave Trigger instruction into the list.

Description
This routine will insert an Addressed Slave Trigger instruction at the end of the passed list given by
list_base.

Parameters
Parameter Name Direction Description
list base Tnput Used by all c_)f the Ligt vGe.neration routines. It is
- created by calling KSC _init_list.
ch addr input Chassis address. Valid values are 0-127.
ttl trig input Generate VXI TTL trigger line.
ecl trig input Generate VXI ECL trigger line.
fp trig nput Generate V160 front panel trigger.
list input Trigger list execution.
timst input Clear time stamp counter.

Return Values
The most common error codes are listed here. For a comprehensive list, please
refer to the Error Codes section of this manual.

KSC_SUCCESS Normal, successful return.
KSC_NOLISTMEM Not enough list memory for this instruction.

216

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

Demands

8 Demands

8.1 The Demand Process

The Demand Process is a high priority process that acts as a server to application processes for handling
demands from the KSC2962 NT device driver. Application processes send registration requests to the
Demand Process for all demands received from the CAMAC highway they wish to service. Demands are
enabled by the Demand Process for each CAMAC or VXI chassis if demands are not currently enabled on
the chassis. When the device driver receives demands from the CAMAC highway, the Demand Process
immediately dispatches the demand to the registered process. Demands that are received for which there
are no processes registered are ignored by the Demand Process (only a statistic is kept).

8.2 Demand Configuration File

On startup, the Demand Process creates a temporary group global section called “DMDREGION”. It then
populates this region with demand entries read from a configuration file pointed located in the same
directory as the Demand Process (DMDPROC.EXE). If the Demand Process receives an error that the
region already exists, it knows that another Demand Process is currently servicing demands. The Demand
Process exits under these conditions.

The maintenance of this file is through a normal text editor. The information contained in the
configuration file is:

. Demand . Demand Queue ..
Chassis Number ID Chassis Type Length Description
1 to 63 0 to 255 lor2 10 English comment

The syntax of the demand configuration file is:

chassis, id, type, glength, desc

Where:

chassis Decimal Chassis number on the Grand Interconnect highway
id Demand 1d generated by the Chassis. See the V160 and 3972 slot zero controllers for

description.
type VXI (1) or CAMAC (2)
glength Queue length
desc User description displayed by dmdsts utility

217

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

Demands

The following is an example configuration file. Any line beginning with an exclamation mark is ignored.

!'Sample configuration file. This file is input to the demand process.

! Exclamation points at the beginning of a line denote comment lines.

! Commas are used to separate the columns of information. The columns are
! defined below. Commas used in the description field will simply

! truncate the description at the position of the comma. The use of spaces

! before and after columns will be considered valid input.

!Chassis

! Demand Id Type Queue Length Description

1, 1, 2, 11, Crate 1/ Demand 1
1, 2, 2, 12, Crate 1 / Demand 2
1, 3, 2, 13, Crate 1/ Demand 3
1, 4, 2, 14, Crate 1 / Demand 4
2, 4, 2, 15, Crate 2 / Demand 4
2, 5, 2, 16, Crate 2 / Demand 5
2, 6, 2, 17, Crate 2 / Demand 6

8.2.1 Application Registration for Demands

The Demand Process establishes a single system-wide pipe “W\pipe\dmdproc”. The Demand Process reads
registration requests from user processes (see KSC_ENABLE_EVENT). The user receives the status of the
Demand notification via a unique pipe created by the user process for the particular demand. The demand
must be defined within the demand configuration file prior to the startup of the demand process. Adding
new demands requires the restart of the Demand Process and the stopping of all processes currently
registered for demands.

8.2.2 Demand Processing

When a demand is received by the Demand Process, the Chassis number is used to traverse the demand
entries associated with it. This should reduce the search time for the matching Demand ID. Any demands
that are received and are not in the table, will be logged to the Demand Process’s log file, and the
unknown-demand counter incremented. If the Application process that should receive the demand is no
longer present, or if its pipe is closed, the demand event will be logged and the not registered counter
incremented. Otherwise, the Demand Process sends the following information to the registered application:

Function = DEMAND MSG
Chassis Number of Demand
Demand ID in Chassis

User Index

Time of Demand

If this demand was a one-shot, the demand entry is cleared. When there are no longer any Application
processes registered for a Chassis, the Demand Process will disable demand recognition for that Chassis.

It is possible that the process may be still active but the image that requested the demand registration may
have been run down. The Demand Process will consider a pipe write error to be the same as a process no
longer being available.

Each time a demand is processed, the Demand Process also increments statistic counters and stores the time

stamp of the event in the group global region. (The utility DMDSTS can display this information.) If at
any time the Demand Process gets a failure writing to a pipe it will disable the demand .

218

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

Demands

The number of demand messages in the demand FIFO, the frequency at which they arrive, and activity
caused by other processes on the highway at the time will influence the speed at which a demand is
delivered to an application process. For CAMAC crates, the Demand Process must read the LAM status
register within the Crate to determine which of the slots within the Crate are asserting their LAM lines.
This required read competes with all other requests to the device driver and will effect the response of the
demand delivery to the registered process.

The Demand Process can not determine if multiple LAMs have been presented within a chassis. It is the
user’s respongibility to determine a redundant demand notification that can be created under the following
circumstances:

1. Slot 1 in Crate 1 asserts LAM
. Demand is sent to 2962
3. Demand process determines that a LAM is present in Crate 1 and read the LAM
status register

4. The Demand is sent to the registered user

5. Slot 2 in Crate 1 asserts LAM

6. Demand process determines that a LAM is present in Crate 1 and reads the
LAM status register that shows two slots asserting a LAM.

7. The Demand Process sends a redundant demand for slot 1 and the demand for
slot 2

8. The requesting process for Slot 1runs and tries to clears the LAM in slot 1

9. The requesting process for Slot 1 receives the redundant Demand

10. The requesting process for Slot 2 receives the LAM

8.3 User Application Program

There may be more than one Application program that receives demands, but a single Demand ID in a
Chassis can be registered to only one Application.

All Application programs must contain the following elements (see program
\KCAQOIN\EXAMPLES\TEST DMD.C):

e CallKSC init to create the structure KSC_handle required by all other KSC and CAM module

e Call KSC_enable_demand for each demand to be received. The application maps the demand region to
ensure the Demand Process is running, and another process is not currently capturing the demand.
This module creates a pipe then sends a registration request to the Demand Process using the Demand
Process’s registration pipe.. The registration reply is received in the APC routine, which it also sets
up. Demands received are dispatched to a user-written APC routine that should appropriately process
each demand received. Finally, this module reposts another read on the pipe for the subsequent
demand.

e The developer must create a read APC routine to examine each demand received and take appropriate
action.

The following diagram shows an overview of the Demand Process, a process registering for demands via
the VISA library, and a process registering for LAMS (Demands) using the CAMAC library.

219

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

Demands

8.4 Demand Process D ataflow

The design of the Demand Message Process is a combination of the Windows NT, NT and UNIX device
drivers for the KSC2962 and KSC2962. This design allows for both CAMAC and VISA (only available
on 2962) demands to be supported.

The NT version of the Demand Process utilizes named pipes for its method of communication between
application programs and itself. A named pipe is a one-way or two-way pipe for communicating between a
server process and one or more client processes. Named pipes allow for multiple instances of a single pipe,
however an instance of the pipe may only be opened by one client at a time. Due to the fact that an
instance of a pipe may only be opened once, multiple threads are often used to create multiple instances of
the pipe to communicate with multiple clients. The following drawing is an overview of demand request
flow.

Demands
/" Application 1\ (T o
(Requestl)_mk pi ! Demand Process e Demand.CFG
.\ Thread /| / et - —_ —)
N 1.7 A N .
e / 1":L(Request) (Request) - .
L : ‘_k”Thrzead// Th‘;?ad, Lacated in same directory
/ ; e 2 as Demand Process
/’ - /Demantj 5 /Requesf
A Thread Thread
A ‘ (Request> 0 /
\ Thread

5

A Y o /
[Application 2
e N
Request) /Request
Thread Thread

A 3

"Requesl) »
Thread /},—"
2

The demand process creates 1 named pipe with the name
WIPIPE\DMDPROC. The multiple pipes shown in the
drawing are multiple instances of the pipe W\PIPE\PMDPROC.

The arced lines above each represent an instance of the named pipe \\\PIPE\DMDPROC. These are two -
way pipes. The application program will send to the Demand Process a request for a particular demand,

220

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

Demands

and will receive from the Demand Process demand information. For every demand requested by an
application program a thread and pipe instance will be created by both the application program and
Demand Process. There will be one thread and pipe instance per demand request. In addition the Demand
Process creates one additional thread (Thread 1 in the drawing above) to read demands from the KSC2962
or KSC2962. Thread 1 will be able to write to Pipes 1, 2, 3, 4 since all it needs is the pipe handle which it
will be able to obtain from the shared memory region. The Demand Process is a Windows program with
one window to display the error and status messages

8.5 Demand Utilities

8.5.1 Program DMDSTS

The DMDSTS program is a diagnostic that maps the Demand Process’s demand global section. It allows a
user to display the demand registration, pipes, and demand statistics. DMDSTS has read-only access to the
Demand Process’s global section.

The program presents information in one of two mutually exclusive modes:

e Continuous mode - Displays and updates every 5 seconds information on currently active
demands. Output is only to the CRT screen in 132-column mode.

e Dump mode - Displays various amounts of information to the CRT screen or (optionally) to a
file. The amount of information displayed depends on which command line switch is used.

Continuous Mode
Usage: $ DMDSTS /CONT Switch explicitly specified
$ DMDSTS Invokes/CONT, by default

The screen/window is put into 132 column mode. For each enabled demand found in the system, the
following are displayed and updated every S seconds.

ACTIVE DEMANDS
chassis type id last demand count mbx letters pid proc name image name
1 CAMAC 10 20-FEB-1996 10:03:52.13 12 _MBA275: o] 89 DMD_PROC_1 DKAQ:[KGIJDMD_1.EXE;52
1 CAMAC 11 20-FEB-1996 10:07:43.19 432 _MBA275: 0 89 DMD_PROC_1 DKAQ:[KGI|DMD_1.EXE;52
2 CAMAC 20 20-FEB-1996 10:05:07.00 53 _MBA318: 4 92 DMD_PROC_2 DKAO:[KGIIDMD_2.EXE;21

To exit this screen, push RETURN. The screen/window should return to the original size (80 or 132
columns).

If the /OUT=file switch is present on the command line with the /CONT switch, it is ignored. Output is
only to screen/window.

Dump Mode

Usage: $ DMDSTS /CHASSIS=x Region header plus chassis “x”, enabled or not
$ DMDSTS /ENABLED Region header plus all enabled demands
$ DMDSTS /CONFIG Region header plus all configured demands

221

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

Demands
$ DMDSTS /ALL Region header plus all demands, even those not
enabled or configured.
$ DMDSTS /OUT=file Output goes to "file", not screen

The first four switches are mutually exclusive, and, if more than one is present on the command line, the
one with highest precedence is used.

Switch Precedence:
/ALL Highest, overrides all below
/CONFIG Overrides all below
/ENABLED Overrides all below
/CHASSIS=x Lowest, overrides no other switches

For each switch, the information displayed is:

Switch Region Chassis Table Demand Entry
Header
/ALL X All, configured or not All that are config
/CONFIG X Only those configured All for config
/ENABLED X Only those enabled All for enabled
/CHASSIS=x | X Only chassis “x”, even if not config or not enabled | All for the chassis

The /OUT switch can be used with any of the above four switches to direct output to the indicated "file"
instead of to the screen/window.

222

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

NT KCDRIVER

9 NT KCDRIVER

This chapter describes the implementation of the KSC 2115 PCI adapter under Windows NT version 4.0.
The reader should reference the KSC hardware documentation for specifics about this device. Of the
functionality provided by the 2115, the following are supported:

e Support for DMA of large memory buffers. The maximum transfer size is 1M bytes (however,
depending on configuration, the number of mapping pages given to the device may limit the actual
transfer size).

e Storage of command lists within the 2115

e Support for Demands/LAMS

e Support for segmented multibuffers

Support for the Clock on the 2115 to trigger execution of command lists (Second Release)

The 2115 is a high performance device that differs from other previously manufactured CAMAC adapters
from KSC. These differences allow for higher throughput, but provide less knowledge about No-X and
No-Q on a per CAMAC instruction execution. Either the list can stop or ignore these conditions with the
total status being the or of all of the CAMAC commands contained within the list.

9.1 Driver Interface

The NT driver is called using the following NT native system calls:

e DeviceloControl

e ReadFile

e WriteFile

The DeviceloControl service uses IOCTRL codes reserved for user and customer devices. These are
defined in the header file provide with the provided kit. The KSC 2115 does not fit well into the NT file

and I/O subsystem. It is not a real file structured device. To utilize its functionality and to acquire the
maximum benefit from the device, a mapping of functionality was done.

9.2 NT devices

There are twenty (0 through 19) NT devices created when the NT driver is loaded. The purpose of sixteen
of the devices is to map the KSC 2115 command list memory into eight partitions. This allows the user to
store a command list in any of the partitions and then execute it. The purpose and mapping of each of the
devices is as follows:

e KCAOQO- Used for control functions in particular the setting and reading partitions and status
information. It is also used for small buffers that utilized programmed buffered I/O.

e KCAOI- Used for reading Demands

223

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

NT KCDRIVER

o KCAO02- Used for getting Buffer Completion flags
e KCAO3- For loading command list into partition one

e KCAOQ4- Executing command lists, and normal transfers using command list in partition one
e KCAO5- For loading command list into partition two

e KCAO06- Executing command lists, and normal transfers using command list in partition two
e KCAOQ7- For loading command list into partition three

e KCAO8- Executing command lists, and normal transfers using command list in partition three
e KCAO09- For loading command list into partition four

e KCAI10- Executing command lists, and normal transfers using command list in partition four

e KCA11- For loading comumand list into partition five

e KCAI2- Executing command lists, and normal transfers using command list in partition five
e KCAI13- For loading command list into partition six

e KCAl4- Executing command lists, and normal transfers using command list in partition six

o KCA15- For loading command list into partition seven

o KCA16- Executing command lists, and normal transfers using command list in partition seven
e KCA17- For loading command list into partition eight
e KCAI18- Executing command lists, and normal transfers using command list in partition eight

e KCA19- Load and Execute a Load and GO command list

9.3 DeviceloControl functions

The file KSCIOCTL.H contains the IOCTL codes that may be passed to the NT driver. The functionality
and buffer contents are defined below. These particular IOCTL codes are only valid for the KCAO,
KCA1, and KCA 2 devices. The DeviceloControl function takes the input buffer and moves it to a system
non-paged pool buffer and calls the driver. The driver does the operation and if it is to return data, places
the data into another non-paged pool buffer that is then copied to the user buffer.

This buffer copying is not desirable for large high speed transfers but is actually faster for small data
transfers as it takes less time to set up the DMA and lock down user buffers than to use those already
locked down in the system space. The driver uses this method for programmed I/0 of the KSC 2115. In
particular the APT uses this for single small transfers.

224

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

NT KCDRIVER

Device KCA00- Control device
e KSC_PARTITION- Set the partition table

o KSC_TIMEOUT- Set the time out for a partition

e KSC_TIMERSET- Sets the timer for a clocked command list

o KSC_2115RESET- Reset the device

o KSC_ID- Return the current release of the driver

e KSC_COUNTERS- Return counters for the driver

e KSC RDPARTABLE- Read the current partition table

e KSC_ERRREG- Read the last status and error information for a partition

Device KCA01- Demand device
o KSC DMDREAD- Read any demands currently in the device adapter.

Device KCA02- Buffer Complete device
e KSC_BUFCOMPLETE- Read any buffer completion flags from the driver. The user must have a
repeating buffer function active on KCA03,

9.3.1 ReadFile and WriteFile Operations

To transfer large amounts of data, the remaining KCA(03 to 19) devices should be used. These devices are
accessed using the NT ReadFile and WriteFile system service calls. The KCA19 device is unique in that it
assumes that the user has built a combined buffer that contains the command list and the actual buffer (see
earlier description of the LoadGo buffer). Access to these devices results in the user buffer being locked
into memory and DMA being transferred to and from the KSC 2115 directly. This method provides the
maximum through put for the device. Additionally, it is the only method that will support the segmented
buffered mode.

9.3.2 Buffers

All buffers must be long word aligned (e.g. on a 32-bit boundary). Additionally, all output buffer must
have space for pipeline requirements of the device (8 long words or 32 bytes).

Some of the IOCTL calls indicate a Read operation when in effect they are being used for a write
operation. Since the Read operation means that the driver must be able to write to indicated address space,
this of less protection than a read, therefore, the buffer should also be readable by the driver.

The LoadGo buffer is a combined buffer that contains both the command list to be loaded and the buffer.

The first long word of the buffer contains the size of the command list in the lower 24 bits and the partition
number in the upper 8 bits. If the user does not specify a partition, then partition one is used by the driver.

225

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

NT KCDRIVER

The command list follows the command list size, followed by storage for the actual buffer which is either
read from for a write from the host to the 2115 or written to for a read from the 2115.

9.3.3 KSC_PARTITION- Set the partition table

The user buffer will be buffered. The IOCTL dispatch code can simply populate the partition table within
the CBF. The buffer will contain an array of eight long words that specify the length of each of the
partitions.

9.3.4 KSC_TIMEOUT- Set the time out for a partition

The user buffer will be buffered. The IOCTL dispatch code can simply populate the partition table for the
indicated partition. The buffer will contain the timer value and the partition number both as long words.

9.3.5 KSC_TIMERSET- Set the device internal timer

This will set the value to be used when the user uses the internal clock of the device. The buffer contains
the timer value to load into the device.

9.3.6 KSC_2115 RESET- Reset the device

This control code contains no data. It simply does a reset on the device. Any outstanding I/O is
terminated. This dispatch code will queue the request to the driver as the controller must be acquired.

9.3.7 KSC_ID- Return the current release of the driver

The IOCTL dispatch code will populate the user’s buffer with a long word containing the current release of
the driver.

9.3.8 KSC_COUNTERS- Return counters for the driver
The IOCTL dispatch code will populate the user’s buffer with the current counters from the CBF.

9.3.9 KSC_RDPARTABLE- Read the current partition table

The IOCTL dispatch code will populate the user’s buffer with eight long words describing the current
partition layout of the command list memory of the device

9.3.10 KSC_ERRREG[1-8]- Read the last status and error information for a
partition

The IOCTL dispatch code will populate the user’s buffer with the status information maintained for a
particular partition.

226

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

NT KCDRIVER

9.3.11 KSC_DMDREAD- Read any demands currently in the device adapter.

The DeviceloControl dispatch code will queue the IRP to the particular demand device. The demand
device will then execute the STARTIO entry of the demand device. The STARTIO entry of the demand
device will then indicate that there is an user buffer for demands and store the size of the user’s demand
buffer. It will then enable demand interrupts on the device and wait on a semaphore. If there are demands
or when demands arrive, a demand interrupt will be triggered. The DPC (Deferred Procedure Call) for the
demands will be requested. It will unload as many demands as possible into the user’s demand buffer and
trigger the semaphore. Due to timing, it is possible that semaphore may be already signaled before the
STARTIO routine begins the wait if there were demands already within the device Demand FIFO.

The 2115 only generates an interrupt when the demand FIFO goes from empty to non-empty. Therefore, if
the FIFO is not empty, the Demands must be unloaded.

9.3.12 KSC_BUFCOMPLETE- Read any buffer completion flags

The IOCTL dispatch code will queue the IRP to the buffer device if there are no current buffers conpleted,
otherwise the IOCTL dispatch code will return the flags immediately. The buffer device STARTIO entry
will then wait for a semaphore to be triggered. The DPC for buffered I/O will then set the semaphore when
a new buffer has been filled. Due to timing, it is possible that semaphore may be already signaled before
the STARTIO routine begins the wait if a buffered operation fills a new buffer segment.

9.3.13 KSC_ACKBUFCOMPETE- Acknowledge the processing of the buffer
completion

The IOCTL dispatch code will queue the IRP to the buffer device. The buffer device STARTIO will raise
IPL, capture a device spinlock, and mark the particular buffers as free. It will then do the /O completion.

9.3.14 DMA Considerations

NT will provide mapping registers to the device driver. The number of map registers available may limit
the size of a DMA transfer. Normally a driver would then execute multiple DMA transfers to
accommodate the complete buffer. However, due to the design of the device, this is not feasible.
Therefore, the user may receive a DMA size too large status code.

For the LoadGo buffers that are sent to KCA19, the buffers are mapped in both system space and mapped
for DMA. This is required since the command list is loaded into the device using programmed 1/O.

9.4 Status Returns

The NT WriteFile and ReadFile system service calls provide either a TRUE or FALSE return status and a
byte count regarding the read or write operation. If an error is encountered, the application thread may call
GetLastError to return the status from the device driver. If the user is doing overlapped I/O and has
multiple threads, it is unclear if this is sufficient to get the desired error. The driver supports additional
calls to get more detailed information from the driver.

227

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

NT KCDRIVER

For the CAMAC library, if the list generates a fault, the CAMAC library API will attempt to request the
driver for the status of the last execution. The CSR and the current memory address of the list when the list
faulted can be useful to determine list faults. The 2115 typically points to the next location of the
command list after the list instruction that caused the stop. Depending on the coding of the command list,
the stop may be a result of a No-Q, No-X, a Halt Instruction, or a faulty list. Because there is not a good
way to acquire sufficient status from the driver with each NT native call, the CAMAC APIs must do a
second request from the driver to acquire the status. It is possible and likely if more than a single process is
using the device that the status will be overwritten by a subsequent request before the extended status is
acquired. Therefore, users who have used the Status buffer will find that the buffer will not be accurate.
The overall status and the first word of the Status buffer will always be accurate as it is a reflection of the
current I/O. This has impact on the CAB16, CAB24, CACTRL, CAM24, CAM16, and their variants.

Lists that generate or sink less data than expected require examination of the command list itself. The
2115 does not give a status buffer which was available on other KSC devices.

9.5 Demands and LAMS

The CAMAC crates on the CAMAC highway have the ability to generate LAMS that are translated to a
demand and stored in the Demand FIFO of the 2115. The 2115 can also generate demands as a result of
list execution. Because the servicing of a LAM requires that a read be done to determine what has card
within the chassis is requesting the LAM, the processing of the LAMs has been migrated to a Demand
Process. The user is notified that a LAM is present using a read from an NT Pipe.

The actual read of the demands as documented earlier is done using the device: kca0l. The demands are
queued within the 2115 until a user process does a device control function. The driver captures the
spinlock for the access to the device registers. It then check to see if there are any currently pending. If
not, a flag is set indicating that a demand interrupt is expected and the demand interrupt is enabled. If there
are demands, then a maximum number of demands will be removed from 2115 and returned to the user.
The extraction of the demand interrupts is done with interrupt lockout and therefore, a maximum of twenty-
five demands will be extracted at any one time such that the system does not experience any degradation.

9.6 MultiBuffer Consid erations

The multibuffer functions of the 2115 allow the user to create lists that are can be clocked by either an
external or the 2115 internal clock. The advantage of the multibuffer is that the user’s DMA buffer need
not be locked down more than once. The notification of each segment of the user buffer is via returned to
the user via the KCA02 device. As each segment is processed by the user the driver must be informed.
Failure to do so, will result in a multibuffer overflow. The driver may report more than a single multibuffer
segment completion per read on KCA02 device.

9.7 NT Limitations

When NT delivers an IRP packet to the device driver, the packet is not cancelable. There are two special
IOCTRL codes that will cancel either a Demand Read or a Multibuffer read request. The special utility
RESETDRIVER is provided to reset the driver and to cancel these types of requests. Users should add this
to their process exit handling.

228

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

Error Codes

10 Error Codes

This appendix documents error generated by the device driver and the different interface libraries. The user
may use different header or include files to provide individual values for the error codes. This document
does not document their actual value as they may change between releases. The header files and symbolic
references should be used to minimize this effect.

10.1 Driver and KSC API Success Codes

There are only two driver and KSC API success codes are returned either as the value of the NT system
service or KSC API function call.

e KSC _SUCCESS The function has completed successfully
KSC_IOQUEUED The driver successfully queued the request

10.2 Driver and KSC API Error Codes

The driver and KSC API error codes are returned either as the value of the NT system service errors
(GetLastError), the KSC API function call, or in the status block condition field. Some of the following
errors may not be returned for the 2115 as this error messages are shared between the CAMAC (2115) and
Grand Interconnect highway devices (2962).

e KSC _ACCESSVIO User buffer cannot be accessed

e KSC ALIGNMENT Buffer not longword aligned

e KSC_ALLOC Failure to allocate storage

e KSC ANR List generated no slave on highway recognized addr

e KSC BADARG Bad argument in list command

e KSC BADHEADER Unable to read header or not formatted

e KSC BADTIMEOUT Invalid time-out value specified

o KSC BADUNIT Function not supported on this unit

e KSC_BUFACCESS Unable to read/write buffer

e KSC BUFMODULUS Buffers must be of even size integer

o KSC BUFTOOLARGE User buffer is too large

e KSC BUFTOOSMALL Read/write buffer is too small

e KSC CHASSIS Invalid Chassis number

229

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

Error Codes

e KSC CLKINTERVAL Invalid clock interval

e KSC CLOCKED Trying to do async command list while clocked
e KSC_DEVICEMAIJOR Device major number mismatch

e KSC_DEVNOTOPEN Device is not open

e KSC_DEVTIMEOUT Device timed out

e KSC_DMDRSP Bad response from demand process for registration
e KSC DMDTBLFULL Process demand table full

e KSC DRIVERERROR Driver internal error

e KSC DRIVER FAULT Internal device driver error

e KSC EMPTYPAR Partition is empty, contains no list

e KSC HANDLE User has not called ksc_init

e KSC ILGCMD Illegal command non-existent CAMAC/VXI

e KSC INVLARG Invalid argument

e KSC _JOCTLERR Ioctl error

e KSC_LOOPSPIN Driver loop problem

e KSC MBFNOTACTIVE Multi-buffer not setup

e KSC_MBUFALIGNMENT Multi-buffer not evenly divisible

e KSC MOREDATA List needs more data

e KSC_NOENDIF Missing ENDIF in IF clause in list

e KSC NOENDCASE Missing ENDCASE in CASE clause in list
e KSC _NOLISTMEM Not enough free list memory for instruction
e KSC NOMEM Not enough system memory to execute function
e KSC_NOQ List generated a No-Q response

e KSC NOQTO Q-repeat timed out

e KSC NOREPLY Command sent, to reply after 200Ms

e KSC NOSUPPORT Request not supported

230

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

Error Codes

e KSC NOSYNC No sync on highway

e KSC_NOTALLXFER Not all of user buffer transferred

e KSC NOTCFG Demand id or Chassis not configured

e KSC NOTINITIALIZED Device not correctly initialized

e KSC NOTOPEN Device not open

e KSC NOTPARTITIONED Command partition not initialized
e KSC_NOTUSED Unsupported error condition

e KSC _NOX List generated a No-X response

e KSC_N23 Listrequested a CAMAC slot > 23

e KSC_NULLCOMANDLIST Command list empty

e KSC NUMBUFFERS Invalid number of multi-buffers

e KSC_OPEN Device already open

e KSC_OSFERROR NT returned error

e KSC OPENERROR Failure to open device

e KSC PARERR Parity error on incoming packet

e KSC_PARTIONERR Partition number is invalid

e KSC PARTIONSIZE Invalid partition size

e KSC PARTNUMBER Partition number is invalid

e KSC_READERR Device read error

e KSC REMPARERR Remote addr. slave parity error

e KSC RESET The KSC device has been reset

e KSC RDWTMIX Invalid mix of read/write commands in list
e KSC UNKNOWNERR Error bit set, but error not defined

e KSC_UNSUPPORTEDFUNC Function not supported on this device
e KSC VXITMO List generated VXI/VME time-out occurred

e KSC_ WRITEERR Device write error

231

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

Camac Error Codes

11 Camac Error Codes

The driver and language interface routines perform various checks on both the parameters passed by the
calling program and the operation of the hardware. When an error is detected, these routines return an error
code to the calling program. This appendix contains a list of error numbers and an explanation of the error.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111,

112

113.

114.

115.

116.

The version number of the driver does not match the version number found in the
Header. Check to make sure all software is at the same version number.

The length of the Data Buffer is greater than the specified size of the Data Buffer
The Header size does not match the Header size of the current version

The length of the CAMAC Control List is greater than the specified size of the
CAMAC Control List

The Status Buffer size does not match the Status Buffer size of the current version

The process does not have either read or write access to the Data Buffer. Check that
the Data Buffer has been properly declared.

The System does not have enough contiguous Real Time Page Table Entries to
double map the Data Buffer. The number of Real Time Page Table Entries can be
changed by modifying the Sysgen parameter REALTIME_SPTS.

The process does not have a big enough Working Set to lock down the Data Buffer.
The Working Set size can be changed by modifying the Authorize parameter
WSquo.

Unknown VMS error while trying to lock the CAMAC Control List into memory.
Unknown VMS error while trying to lock the Data Buffer into memory.,

Unknown VMS error while trying to lock the Status Buffer into Memory.

The CAMAC Control List does not have enough space at the end for the CAMAC
driver to insert a number of halt instructions. The length of the CAMAC Control
List must be four long words less than the size of the CAMAC Control List so four

Halt instructions can be added.

The Data Buffer has a length of zero but must have a length of at least one. A
dummy word must be entered into the Data Buffer (Header(DatLen)=1)

The driver does not have read access to the Header. Check that the Header has been
properly declared.

The size of the Header is over 64K words. Check that the size of the Header has
been declared as a long word (IINTEGER*4 variable)

The process does not have either read or write access to the CAMAC Control List.
Check that the CAMAC Control List has been properly declared.

232

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

117.

118.

119.

120.

121.

122

123,

124.

125.

126.

127.

128.

129.

130.

131.

132.

Camac Error Codes

The System does not have enough contiguous Real Time Page Table Entries to
double map the CAMAC Control List. The number of Real Time Page Table
Entries can be changed by modifying the Sysgen parameter REALTIME SPTS.

The process does not have a big enough Working Set to lock down the CAMAC
Control List. The Working Set size can be changed by modifying the Authorize
parameter WSquo.

The length of the CAMAC Control List is over 64K words. Check that the variable
specifying the length of the CAMAC Control List has been declared as a long word
(INTEGER*4 variable)

The CAMAC Control List does not fit in one segment. The CAMAC Control List
plus the CAMAC Control List offset cannot fit within one segment (IBM PC only).

The size of the CAMAC Control List is over 64K words. Check that the variable
specifying the size of the CAMAC Control List has been declared as a long word
(INTEGER*4 variable)

The length of the CAMAC Control List is over 32K-1 words. The largest CAMAC
Control List allowed is 32K-1 words

The CAMAC Control List has a size of zero but must have a size of at least one

The process does not have either read or write access to the QXE Buffer. Check the
address and the size of the QXE Buffer in the Header.

The System does not have enough contigunous Real Time Page Table Entries to
double map the QXE Buffer. The number of Real Time Page Table Entries can be
changed by modifying the Sysgen parameter REALTIME_ SPTS.

The process does not have a big enough Working Set to lock down the QXE Buffer.
The Working Set size can be changed by modifying the Authorize parameter
WSquo.

The QXE Buffer does not fit in one segment. The QXE Buffer plus the QXE Buffer
Offset cannot fit within one segment (IBM PC only).

The size of the QXE Buffer is over 64K words. Check that the variable specifying
the size of the QXE Buffer has been declared as a long word (INTEGER*4 variable)

The size of the QXE Buffer is over 32K-1 words. The largest QXE Buffer allowed
is 32K-1 words

The process does not have either read or write access to the Status Buffer. Check
that the Status Buffer has been properly declared.

The System does not have enough contiguous Real Time Page Table Entries to
double map the Status Buffer' The number of Real Time Page Table Entries can he
changed by modifying the Sysgen parameter REALTIME-SPTS.

The process does not have a big enough Working Set to lock down the Status
Buffer. The Working Set size can be changed by modifying the Authorize

233

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

133.

134.

135.

136.

137.

138.

139.

140.

141.

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.

Camac Error Codes

parameter WSquo.
The size of the Status Buffer is over 64K words. Check that the variable specifying
the size of the Status Buffer has been declared a long word (INTEGER*4 variable)

(advanced Fortran routines).

The process does not have either read or write access to the Word Count Buffer.
Check the address and the of the Word Count Buffer in the Header.

The System does not have enough contiguous Real Time Page Table Entries to
double map the Word Count Buffer. The number of Real Time Page Table Entries
can be changed by modifying the Sysgen parameter REALTIME SPTS.

The process does not have a big enough Working Set to lock down the Word Count
Buffer. The Working Set size can be changed by modifying the Authorize

parameter WSquo.

The WC Buffer does not fit in one segment. The WC Buffer plus the WC Buffer
Offset cannot fit within one segment (IBM PC only).

The size of the WC Buffer is over 64K words. Check that the variable specifying
the size of the WC Buffer has been declared as a long word (INTEGER*4 variable).

The size of the WC Buffer is over 32K-1 words. The largest WC Buffer allowed is
32K-1 words.

Unknown VMS error while trying to lock the Word Count Buffer into memory.
Unknown VMS error while trying to lock the M Buffer into memory.
An illegal command was found in the CAMAC Control List

An In-Line CAMAC read was specified. Only CAMAC write and control functions
can be specified in an In-Line CAMAC Control List command.

An illegal LAM type was specified, the command types are zero through seven.

A block transfer CAMAC control function was specified. Only CAMAC read and
write functions can be specified for block transfer CAMAC Control List commands

The remainder of the Data Buffer is too small to hold the data for the CAMAC block
transfer

An illegal CAMAC word size for the CAMAC device was encountered

Block transfer timeout. The CAMAC software driver has timeout because the
CAMAC hardware has not responded.

Block transfer timeout. The CAMAC software driver has timeout because the
CAMAC hardware has not responded.

Bad interrupt mode

The QIO request was in some way canceled.

234

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

211.

212

213.

214.

215.

216.

217.

218.

219.

220.

221.

222

223.

224.

301.

302.

303.

304.

305.

306.

307.

308.

3009.

Camac Error Codes
Out of data error. The Data Buffer was not big enough to hold or accept the data for
the single naf.
Error in purging the data-path.

Single transfer timeout. The CAMAC software driver has timeout because the
CAMAC hardware has not responded.

Single transfer timeout. The CAMAC software driver has timeout because the
CAMAC hardware has not responded.

Error in allocating a data-path

Error in allocating mapping registers.

Error in purging the data-path.

Error in purging the data-path.

No PHYIO privileges, PHYIO privileges are needed for the operation.
Error in purging the data-path.

Power failure error.

The CAMAC Control List could not hold the enter LAM command.

The CAMAC driver could not allocate enough system memory to book the LAM
request.

Illegal CAMAC crate. The CAMAC crate is probably off-line.

Invalid crate number during a CAMAC block transfer operation. The specified crate
is not online.

An N greater than 23 error has occurred during a CAMAC block transfer operation.
A CAMAC NO-Q error has occurred during a CAMAC block transfer operation,
CAMAC no-sync error during a CAMAC block transfer operation.

A CAMAC NO-X error has occurred during a CAMAC block transfer operation.

A CAMAC non-existent memory error has occurred during a block transfer
operation.

A CAMAC STE-error has occurred during a CAMAC block transfer operation.
A CAMAC timeout error has occurred during a CAMAC block transfer operation.

An undefined CAMAC error has occurred during a CAMAC block transfer
operation.

235

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

310.

311.

312.

313.

314.

315.

316.

317.

318.

401.

402.

403.

404.

405.

406.

501.

502.

503.

504.

505.

506.

507.

Camac Error Codes

Invalid crate number during a CAMAC single transfer operation. The specified
crate in not online.

An N greater than 23 error has occurred during a CAMAC NAF operation.
A CAMAC NO-Q error has occurred during a CAMAC NAF operation.

A CAMAC STE - error during a CAMAC single transfer operation.

A CAMAC NO-X error has occurred during a CAMAC NAF operation.

A CAMAC non-existent memory error has occurred during a single transfer
operation.

A CAMAC STE-error has occurred during a CAMAC single transfer operation.
A CAMAC timeout error has occurred during a CAMAC NAF operation.
An undefined CAMAC error has occurred during a CAMAC NAF operation,

Access violation, either the 1/0 status block cannot be written by the caller, or the
parameters for device-dependent function codes are incorrectly specified.

The specified device is offline and not currently available for use.

Insufficient system dynamic memory is available to complete the service. There are
probably no free IRPS, use SHOW MEMORY to see the number of free IRPS.

An invalid channel number was specified.

The specified channel does not exist, was assigned from a more privileged access
mode, or the process does not have the necessary privileges to perform the specified
functions on the device.

The QIO error is unknown to the CAMAC software.

Access violation, the device string cannot be read by the caller, or the channel
number cannot be written by the caller.

The CAMAC device is allocated to another process.

Illegal device name. No device name was specified, the logical name translation
failed, or the device string contains invalid characters.

The device name string has a length of 0 or has more than 63 characters.
No I/O channel is available for assignment.

The specified CAMAC device does not exist. Check the device string for
misspellings or a missing colon and check that the device driver has been loaded.

The process tried to assign a CAMAC device on a remote node. CAMAC
operations cannot be performed over a network.

236

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

508.

601.

602.

603.

701.

702.

703.

704.

705.

706.

707.

708.

709.

710.

711.

712.

713.

714.

Camac Error Codes

The CAOPEN error is unknown to the CAMAC software.

An invalid channel number was specified.

The specified channel is not assigned or was assigned from a more privileged mode.
The CACLOS error is unknown to the CAMAC software.

An invalid CAMAC subaddress (A) was found. The CAMAC subaddress was
either less than 0 or greater than 15 (A <0 or A > 15).

Invalid mode byte.

A invalid CAMAC block transfer type was found. The legal block transfer types are
QSTP, QIGN, QRPT, and QSCN with corresponding values of 0, 8, 16, and 24,
respectively.

An invalid CAMAC function code (F) was found. The CAMAC Function code was
either less than 0 or greater than 31 (F <0 or F > 31).

An invalid CAMAC crate controller function was found. The valid CAMAC crate
controller functions are INIT, CLEAR, SETINH, CLRINH, and ONLINE with

corresponding values of 0, 1, 2, 3, and 4, respectively.

An invalid CAMAC slot number (N) was found. The slot number was either less
than 1 or greater than 30 (N < 1 or N > 30).

Invalid LAM type

Invalid priority

A CAMAC block transfer control operation was specified which is invalid, Only
CAMAC Read or Write block transfers are allowed. The function code (F) for the
block transfer was either between 8 and 15 inclusive or between 24 and 31 inclusive

(8 <F<150r24 <F<31).

An in-line CAMAC read was specified. Only in-line CAMAC control and write
operations are legal (F8 through F31)

The Data Buffer is not big enough to hold all the data for the CAMAC Control List
The CAMAC Control List is not big enough to hold all the commands

A CAMAC block transfer with a block size of zero was found. A CAMAC block
transfer must have a size of at least one word.

Illegal CAMAC crate number.

237

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

Camac Error Codes

INDEX

Cc

cabl6, 12, 13, 14

CABI16, 7,229

cab24, 16,17, 18

CAB24, 7,229

cablk, 51, 52, 54, 57, 61, 64, 71, 73

caclos, 15, 18, 19, 20, 21, 23, 24, 32, 35, 37, 38, 39,
42,54, 58,61, 64,68, 72, 76

CACLOS, 6, 239

cactrl, 6, 7, 22, 23, 123, 124, 229

caexec, 55, 57, 59

caexew, 54, 59, 61, 64, 68, 72, 76

cahalt, 54, 57, 61, 62, 64, 67, 68, 71, 72, 76

cainaf, 50, 65, 67

cainit, 50, 51, 54, 55, 57, 59, 60, 62, 63, 65, 67, 69, 71,
73,75

calam, 25, 26, 28, 43

CALAM, 7, 10

caml6, 29, 30, 31, 32, 46

CAMIG, 1,6, 7,229

cam24, 21, 33, 34, 35

CAM24,1,6,7,125,229

CAMAC command lists, 50

CAMAC List Building Routines, 50

camerr.h, 14,17, 20, 23, 27, 31, 34, 36, 39, 41, 44,
53, 56, 60, 62, 66, 70, 75

camsg, 14,15, 18,19, 21, 23, 24, 27, 28, 31, 32, 34,
35,36, 37,39,42,45, 46, 53, 54, 56, 57, 58, 60, 61,
63, 64, 67,68, 71,72,75,76

CAMSG, 7,8

canaf, 50, 73, 74, 76

caopen, 12, 14, 16, 18, 20, 21, 22, 23, 26, 27, 28, 29,
30,31, 33, 34,37,38,39, 41, 42, 44, 45, 46, 53, 55,
56,59, 60, 63, 67,71, 75

CAOPEN, 6, 7,9, 239

CCL, 50

ccstat, 40, 42

CCSTAT, 7, 125

cxlam, 43, 44, 45

CXLAM, 7, 10

K

KSC_2115 RESET, 227

KSC_ACKBUFCOMPETE, 228

ksc_api.h, 13,17, 20, 23, 27, 31, 34, 36, 38, 41, 44,
53,56, 59,62, 66, 70, 75

KSC_bdcast_trigger, 78, 84, 198, 204

KSC_block rw, 78, 85, 198, 205

KSC_BUFCOMPLETE, 226, 228

KSC_case, 79, 198, 199

KSC_counters, 114

KSC_demand read, 98, 100

KSC_display_partitions, 98, 101

KSC_DMDREAD, 226, 228

KSC_dump_list, 77, 79, 87, 197, 199, 207

KSC else, 78,198

KSC_enable_demand, 99, 102, 220

KSC_end_list, 79, 88,199, 208

KSC_endcase, 79, 199

KSC_endif, 78,79, 198, 199

KSC_ERRREG, 226, 228

KSC_exec_clocked _list, 98

KSC_exec_rlist, 98, 104, 106

KSC_exec_wlist, 98, 105, 106

KSC_execute_msg_dev, 78, 79, 198, 199

KSC_finish, 77, 79, 89, 91, 197, 199, 209, 212

KSC_gen_demand, 78, 79, 90, 198, 199, 210

KSC_get_failure, 98, 106

KSC ID, 226, 227

KsC_if,78,79,198,199

KSC_INIT, 9, 100, 101, 102, 104, 105, 106, 108, 109,
110, 111, 113, 114, 115, 116, 117, 118, 119, 120,
121,122

KSC_init_list, 77, 78, 84, 85, 88, 89, 90, 91, 92, 94,
96, 197, 198, 204, 205, 208, 209, 210, 212, 213,
215,216

KSC_inline_rw, 78,92, 198, 213

KSC_inline_w, 78,94, 198, 215

KSC_lasterror, 97, 109

KSC load_cmdlist, 98, 111

KSC_loadgo, 98, 110, 122

KSC_mbuf done, 98

KSC_partition, 115

KSC_PRINT SYMBOLIC, 9

KSC_RDPARTABLE, 226, 227

KSC_read cmdlist, 98, 113

KSC_read_counters, 98, 114

KSC_read_multibuf, 98

ksc_set_partitions, 160

KSC_set_timeouts, 116

KSC_slave_trigger, 78, 96, 198, 216

KSC_TIMEOUT, 226, 227

KSC_TIMERSET, 226, 227

KSC_v160_loademd, 98, 117

KSC_v160_readbuf, 98, 118

KSC_v160_reademd, 98, 119, 120

238

Windows 2000 Device Driver/API
2962 PCI Grand Interconnect

KSC_v160_readreg, 98, 120
KSC_v160_trigger, 98, 121
KSC_v160_writereg, 98, 122

kscuser.h, 13, 14, 17, 20, 22, 23, 27, 31, 34, 36, 38
41, 44, 52, 53, 56, 60, 62, 66, 70, 74, 75

S

STATUS ARRAY, 9

\

viAssertTrigger, 134, 136
viClear, 134, 138, 146
ViClose, 134
viFindNext, 134, 140, 141
viFindRsre, 134, 135, 140, 141
viGetAttribute, 134, 143
viln16, 134, 144

viln8, 134, 146
ViMapAddress, 134
ViMove, 134
ViMovelnli6, 135
ViMoveln32, 135
ViMoveln8, 135
ViMoveOutl6, 135
ViMoveOut32, 135
ViMoveOut8, 135

Camac Error Codes

viOpen, 135, 140, 141, 158
viOpenDefaultRM, 134, 135, 160
viOutl16, 135, 163

viOut32, 135, 165

viOut8, 135, 161

viPeek16, 135, 168

viPeek32, 135, 169

viPeek8, 135, 167

viPokel6, 135, 171

viPoke32, 135, 172

viPoke8, 135, 170

viPrintf, 135, 173, 176, 186, 190
viQueryf, 135, 176, 191
ViRead, 135

viReadSTB, 135, 181

viScanf, 135, 176, 182, 192
viSetAttribute, 135, 185
viSPrintf, 135, 186

viSScanf, 135, 187
viStatusDesc, 135, 188
viUnmapAddress, 135, 189
viVPrintf, 135, 190, 193
viVQueryf, 135, 191

viVScanf, 135, 192, 194
viVSPrintf; 193

viVSScanf, 135, 194
viVxiCommandQuery, 135, 195
viWrite, 135, 196

239

