KineticSystems Company, LL.C
AD3Z-2PAl
2915 Device Driver and API Library
for Windows 2000
User’s Manual

(C) 2003
Copyright by
KineticSystems Company, LLC
Lockport, Illinois
All rights reserved

March 14, 2003

KineticSystems Company, LLC

2915 Device Driver and API
Library for Windows 2000

KineticSystems
Company, LLC

900 N. State Street, Lockport, Illinois 60441 (815) 838-0005 (815) 838-4424

Device Driver & API Library for
Windows 2000

2915 PCI Interface

Document Revision: Friday, March 14, 2003
Software Version: 1.0

Operating System: Microsoft Windows 2000

Contents

1 HARDWARE AND SOFTWARE INSTALLATION

1.1 DITECTOTY SHIUCIUTEc.evceiriiierr sttt et s ter et e st es s renesee et esessseessesesseesesesseseseseeenes 1
1.2 HEAAET FIESoeeeeceeiet ettt ter ettt sttt e e s eesa et e en et e sems e seee s e eseeseeeo 2
2 CAMAC COMMAND LINE UTILITIESc.ccorimreriicseicacsansensssmssssscssssmermssssssssnssssssorsssessersssesseseoms e
2.1 Command SUITHIIATYccoveueieriririniecrrereneeeceusteienssssitesreseneesseessesesesesessesesssssenssssssssses e seseoss 3
22 CACTRL CAMAQC UHIEY ..o eieeteerteiie it ses et sene e sesesesseessesseseseseses e e ee et 3
2.3 CAM CAMAQC ULLLY cooveveeieieinimrererrriesisieetseeessessssesseteese s eseseeetsessesessssseesesssesseseses s sesesseeesesseeesnn 4
2.4 CCSTAT CAMAC UHILY .ccrvrrieiveenietiierenesessiesiesist e s tseeseeseseeesssssssessesesessessssssesesessesseeeeeseeensn 5

3 CAMAC APPLICATION PROGRAMMING INTERFACE (API).....ccoceerrererirrrrersesenerssrsnsessnsessesssrens
3.1 CAMAC Library Call SUIMIMATYcouevuiurrrreereresieesseseseseseseseessssossssessssessoesesessesses s oeesee e 6
3.2 InitialZation CallS......occoieveueiiiirie s enseses et se e s enee e e eeeesese s e e ere et sen e e e 7
3.3 Single-Action Data Transfer Calls...........coccoivieririnreireieieee et es e 7
3.4 BIOCK TIaNSTET Callsoccovieieiiiieniiecnninieete ettt eeeen e ettt s e s e e s ee s e s seeee e 7
3.5 Block Transfer MOME..........cocoiviiireeiririnniiersse et eeeee e e e er s e e s e s e st et s s s s s 7

3.5.1 Q-MOdE TIANSTETS.....oeeieeereerenrcercrencneeiei e et re et eeet s ee e sesese s ss e s s e 7
352 Data WOId SiZe......ccooerereririeieriereetrreierete st st s e ereseeeseeees et e eeasessssse e eeseneseees et eenos 8
3.6 SEATUS ATTAY .veriviiisiiiticreneicer et sesscreteser e e e s e b e s ess et et s s s e etabassorens seeeseses e sessesensseessesesssesss s esenes 9
3.7 Asynchronous Event Handling (LAMS)c.c.oeoieieiirireiie oo eeeeeneeeeeeeeeeesesseres e esssesess e 10
4 CAMAC APPLICATION PROGRAMMING INTERFAGCE (API)......cosueetrirerreernessceresrsessessssssssssne
4.1 CAMAC Operational ROULNEScevutrriinrieernnsitererensisssssiseressesseeseseeesseseesssesesssesssnssess s 12
4.1.1 CADLO. oottt ettt ettt ettt et et et et e e s et e s e e ee s e eetos e e sens 12
4.1.2 CADZA ittt sttt e n et ee e s e e s et eee e e sees 15
413 CACIOS ...ttt ettt et s e et oot e e e et e e e et et eene et s e et enns 18
4.1.4 CACKTL ...ttt b ettt e b e ettt e er et e et et et et b eear oo ses e et e et eeneeees 20
4.1.5 CALAIIL ..ottt ea sttt er et s e b bt e en e eeeese e et e et es et e e e et et et st s e eeeees 22
4.1.6 CAIMNLG. ...ttt ettt s e st r et es e e et et vernt e et eene e e e et ems et e e e e e e 28
4.1.7 CAINZA ...ttt ettt et b e et et s rs e s e s s s seessee e nen et e eeee s e e e e e e ene et ee st e enseenns 30
4.1.8 CATIISE +.etrerrrreuetessstreite s srte s sbe e s as e sr s e s rne s s as s s ab e et e e s e sa e sbe sateaessesensnssanssessnen e nseesreeeeeseesensenssons 33
4.1.9 CAOPEIL .ttt st r e s e s e et et e eas et es b e et ebe fh b s b e s st st e R e et aesaerea s sessnrereesmtenntenesneeeseneeees 35
U110 COSEAL ..ttt et et e ee s e an et e et e e e ee et et e e eeeon 37
A LT CXIAIN ettt st e e ettt e e et e er ettt eeeen 39
4.1.12 camlOOKUDPINSEcocveiriiiiiieiicrseerecescrsseaste b sttt s st se s eees s s st se st enseness s s seseens 44
4.2 CAMAC List Building ROULINESccccoruririrircneriinieereriieisissnsceeseesesseseesssesssssesesssesssssssssssess 46
421 CADLK ..ttt sttt et ettt n e et e et e s e e e e ettt eeees e 47
422 CABXEC 1ererinirenrnnrestrvressi st et e et s b e e et bt et s et e st e eb et sreebabesareresabeanssetessaentonensaeesaeseeaseeesesnrenns 51
423 CABKEW etiiriianiiiiieeeinre et b s s s hora e ne s e bes s sae e s e e s an e e enseasbsessseeasessasneeeeneeenensessesseesanssessnres 55
4.2.4 CANBIL. ...ttt ettt n et et et e et e s e e es e e neene s s es oo 58
425 CAINAL L.ttt sttt e et et et ae et et eas 61
4.2.6 CAIIIE 1.t cecm ettt se et et r e e bsaabe s e b e et sasosesesssereneees e e sessese e ereseseasesseseeeessese s e 64
4.2.7 CADAL ...ttt et et s et et e et et et em st et et ereee e 68

5 DEMANDS

5.1
5.2
53
5.4
5.5
5.6
5.7

5.7.1

The Demand PIOCESScc.curiieureeereiiieniieieetetesis st see et eee et e e e s s ese e 72
Demand ConfIguration Fileeeceeiriueuireinmeinieieiteereeee et eee e eeer oo re s s e 72
Application Registration for Demandsoceeeevuveuruirruenreeseeseeeeeeeeceeesesesessses oo, 73
Demand PTOCESSINEccueurerimruieeeirenieisaeiessese s tessssesseeeseeseaseeeeseessesesss e s s eseesesoeeeeeeeeesss 73
User Application PIOZIAIMccvivveeruiiiiniretic st s eeteseees e e s s os e e 74
Demand Process Dataflowccciocmrieicreiiieisciee e ese s e rens e e et se oo 75
Demand ULIHESc.cvereriricirree et eeeeees s et et e et s s s s e e seeeee e ese 76

Program DMDSTS ...ttt s n st en s ettt 76

2915 Device Driver & API
Library for Windows 2000 Hardware And Software Installation

1 Hardware And Software Installation

The Windows Hardware Manager installs the 2915 driver, API library and associated files. Power down
your PC, and insert the 2915 into an empty PCI slot. When the PC is powered back up, Windows will
detect the newly installed hardware and invoke the Hardware Manager. At this point, you should insert the
provided software disk into your computer, and follow the Hardware Manager dialogs through the
installation procedure. After the Hardware Manager indicates the new hardware has been successfully
installed, remove the disk and store it in a safe place.

1.1 Directory Structure

The installation procedure will have installed the 2915 software driver and the API (Application
Programming Interface) package. The API can be found on your computer’s root drive, under “Program
Files\kineticsystems\kpa”. The package is organized into several folders:

e bin This folder contains the API dll (kpaapi.dll), the Demand process (dmdproc.exe), the Demand
statistics package (dmdsts.exe), an example demand configuration file (demand.cfg), and 3 simple
CAMAC utilities (cam.exe, cactrl.exe, and ccstat.exe). The Demand and utilities software is described
in different portions of this manual.

Software developed for the 2915 will use kpaapi.dll. When you run your own applications, the system
must find this file; you may wish to copy it into a system location (such as the WINNT directory on
your root drive) or update your environment’s PATH variable to include its location. The system will

also find it if it is in the same directory as your application.

2915 Device Driver & API
Library for Windows 2000 Hardware And Software Installation

examples This folder contains the source code for the CAMAC utilities. These simple programs can
be used as templates on which to build your own applications.

include This folder contains the headers you will need to compile your applications. More information
is provided in the next section.

lib this folder contains the kpaapi.lib file that you will need to link to the kpaapi.dll. Consult your
development environment’s compiler documentation for instructions on how to include this file in your
project.

1.2 Header Files

Various include files are provided as part of the API package. Some files will need to be included in every
project, some only in projects that make use of certain types of functionality (i.e., demand processing).
Some files are required only by the headers themselves, and do not need to be directly included in your
project.

ksc_api.h This is the primary include file for the API, and will need to be included in every 2915
application. It should be the first of the kpa include files included in your code.

kse_handle.h This file contains definitions for managing the API handle obtains from routines such as
caopen(). Every call to the API will require a handle, so this file should be included in every project.

kscuser.h This file contains various definitions and function templates for the APL
camerr.h this file contains error codes specific to CAMAC returned by the api.
kerrors_msg.h This file contains error codes general to the APIL

kse_demands.h This file is used for demand processing, and contains definitions required for
interfacing with the demand mechanism.

kse_genlist.h This file is used for the various list building routines (i.e., cablk(), cainaf(), etc.).

2915 Device Driver & AP]
Library for Windows 2000 CAMAC Command Line Utilities

2 CAMAC Command Line Utilities

This chapter describes the general-purpose CAMAC utilities available for simple testing. These utilities
may be called from a DOS prompt, a batch file, or from the WINDOWS icon. Features included in the
commands are single 24/16-bit CAMAC data transfers, control operations to the crate controller, and return
of the crate controller status. Using the commands allows the user to verify that a given CAMAC module
can be addressed, and that it is operating properly. In addition, it is a convenient way to become familiar
with how the module functions before developing application code.

2.1 Command Summary

Command parameters define what the utility will act upon. All parameters are optional as indicated by
brackets “[...]”. The user will be prompted for any parameters that are not specified on the command line.

The following describes the execution of the utilities from the DOS prompt or a batch file with parameters.

2.2 CACTRL CAMAC Utility

This utility does control functions to CAMAC chassis on the CAMAC Serial highway. CACRTL performs
a crate wide CAMAC control operation (i.e., Init, Clear, Set Inhibit, Clear Inhibit, Online).

The syntax for the CACTRL utility is:
CACTRL [/C=] [/INIT] [/CLEAR] [/SETINH] [/CLRINH] [/ONLINE]

Note - All parameters may be omitted or when specified may be entered in any order.

Iptio.
C Chassis number of the crate (0 to 7). The default value is chassis one.
INIT Assert the init line in the CAMAC chassis
CLEAR Performs a CAMAC clear operation
SETINH Set the dataway inhibit line in the CAMAC chassis
CLRINH Clear the dataway inhibit line in the CAMAC chassis
ONLINE Put the chassis online

CACTRL Examples

Example 1:

In this example, the first CACTRL command specifies the crate number and performs a control operation
(crate online). The second CACTRL command will prompt the user for the crate number and sets the
inhibit bit in the crate controller. As a result of the inhibit bit being set the LED on the crate controller is
turned on and the inhibit dataway signal true.

CACTRL /ONLINE /C=3
CACTRL /SETINH

Example 2:
In this example, the first CACTRL command specifies the crate number and performs a control operation
(crate online). The second CACTRL command prompts for the crate number and sets the inhibit bit in the

2915 Device Driver & API
Library for Windows 2000 CAMAC Command Line Utilities

crate controller. As a result of the inhibit bit being set the LED on the crate controller is turned on and the
inhibit data way signal true. The third CACTRL command prompts for the crate and performs a CAMAC
clear operation.

CACTRL /ONLINE /C=2

CACTRL /ONLINE /SETINH
CACTRL /CLEAR

2.3 CAM CAMAC Utility

The CAM utility allows the user to do simple CAMAC operations. This utility should be used with caution
as it performs commands to the target crate without any regard to the current applications running on the
system. The syntax for the CAM utility is:

CAM [/C=] [IN=] [/A=] [/F=] [/[DATA=]

Note - All parameters may be omitted or when specified may be entered in any order.

C hassis number of the crate (0 to 7). The default value is chassis one.
N Station number within the CAMAC chassis of the module to be selected.
A Sub address to be selected within the CAMAC module. The default value is zero.
F The CAMAC funetion code to be performed to the device. The default value is zero.
Optional Write data if the function requires data. The user may indicate hexadecimal
DATA . P
by prepending an “X” to the value.

CAM executes a single 24-bit CAMAC data transfer. This command reads or writes 24 bits of data to or
from a CAMAC module.

CAM Examples

Example 1:

In this example, the first CAMAC command performs a read function, F(0), from sub-address zero, A(0),
of crate one, C(1) directed to slot 1, N(I). The second command also performs a read function from the
same slot and address, but the user will be prompted for the crate number. The third CAMAC command
will prompt the user for all parameters. The output for a read operation displays the data in both decimal
and hexadecimal format. Although the output is listed only once in the following example, it would
actually be produced by each of the read operations as they were executed.

CAM /C=1 /N=I /A=0 /F=0
CAM /N=1 /A=0 /F=0
CAM

Data returned from CAM24 in decimal = 32, in hex = 0x20

Example 2:

In this example, the first CAMAC command performs a write function, F(16), to sub-address zero, A(O),
with a value of 10 directed to crate 2, slot 3. The second command also performs a write function however
the data value is specified in hexadecimal format. The “x” is used to represent hex notation with a value
|l20".

CAM /C=2 IN=3 /A=0 /F=16 /DATA=3
CAM /C=2 /N=3 /A=0 /F=16 /DATA=x20

2915 Device Driver & API
Library for Windows 2000 CAMAC Command Line Utilities

2.4 CCSTAT CAMAC Utility

Displays the crate controller status (i.e., Inhibit status, L-SUM status, LAM register status, Crate Controller
Status register, and Error Status register). The first two values are displayed in decimal, the remaining
three values are in hexadecimal format. Refer to the crate controller manual for the meaning of the bits in
the crate controller registers.

CCSTAT [/C=]

e crate (0 to 7). The default value is chassis one.

Example 1:
In this example, the first CCSTAT command specifies the crate number and displays all crate controller
status registers.

CCSTAT /C=1

Output -

Crate status for crate: 1

Inhibit Status = 1

LSUM status =0

Lam Register (Box) = 0x40

Crate Controller Status Register = 0x 44
Error Status Register = 0x0

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

3 CAMAC Application Programming Interface (API)

This section contains a detailed description of the various functions associated with the 2915 Application
Programmer Interface (API). This set of functions allows an application program to access the full
functionality of the 2915 PCI hardware interface for performing CAMAC operations. A basic set of
functions is provided for executing both single transfer and block transfer operations. Additionally, a set of
CAMAC Command List Building functions is provided to execute a Command List. A CAMAC
Command List is a user-constructed sequence of CAMAC commands that is passed to the 2915 driver with
one function call. The goal of the Command List is to improve data throughput by eliminating system calls
for each command. Instead, one system call is made and many commands can be executed. The 2915
Command List is implemented at the driver level.

3.1 CAMAC Library Call Summary

The standard CAMAC library routines provide you with a simple direct set of calls to perform I/O
operations to CAMAC. The calls are divided into five groups:

Initialization calls

caopen (chan, device, StatusArray)
caclos (chan, StatusArray)

Single-Action Data Transfer Calls

caml6 (chan, C, N, A, F, data, StatusArray)
cam24 (chan, C, N, A, F, data, StatusArray)

Block Transfer Calls

cabl6 (chan, C, N, A, F, mode, DataArray, TransCount, StatusArray)
cab24 (chan, C, N, A, F, mode, DataArray, TransCount, StatusArray)

Status and Control Calls

cactrl (chan, C, func, StatusArray)

cestat (chan, C, CrateStat, StatusArray)

camsg (StatusArray)

LAM or Asynchronous Calls

cxlam (chan, C, LAMid, Type, Prio, ASTadr, StatusArray)

calam(handle, C, lam_id, lam_type, priority, ast_addr, user_parm, CIrN, CIrA, CItF, DsbN, DsbA, DsbF,
error)

3.2 Initialization Calls

The initialization calls provide a mechanism to open the CAMAC device for I/O by a program. Subroutine
caopen should be called once for each CAMAC interface (2915) to be accessed by the program and should

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (AP!)

not be called again until the channel has been closed. The returned pointer from the caopen function points
to a KSC AP handle, which is allocated when the 2915 is opened.

3.3 Single-Action Data Transfer Calls

The single-action data transfer calls are simple to use. Each call results in a single CAMAC operation and
the appropriate data transfer. Two versions of the single-action routines are provided, cam16 for 16-bit
transfers and cam24 for full 24-bit transfers. These routines are appropriate for applications where single
1/0 operations are required or for short blocks of data where the overhead of program-transfer operations
can be tolerated. For large blocks of data, the CAMAC block transfer routines are recommended; they take
full advantage of the hardware DMA features and only incur the setup overhead once for the entire
operation.

3.4 Block Transfer Calls

The CAMAC block transfer calls move blocks of data to or from modules in a single operation using the
DMA features of the 2915 PCI Interface. Use these routines for reading or writing blocks of data between
computer memory and transient digitizers, FIFO modules, display modules, etc., for repeated operations to
a single module; and for reading or writing a group of modules in a CAMAC crate. Even for a modest-size
data block, these routines have less overhead than the equivalent number of single-action calls because,
they transfer the data block at a DMA rate and incur the software setup overhead only once for the entire
operation.

The maximum size of a block transfer operation is 32 Kbytes. If block transfers of larger that 32 Kbytes
need to be performed, multiple CAMAC operations must be performed.

3.5 Block Transfer Mode

3.5.1 Q-Mode Transfers

The 2915 hardware supports four Transfer Mode that aid in transferring data to or from a CAMAC module.
These Transfer Mode rely on the CAMAC Q-response for determining data validity and whether
subsequent operations are to be performed.

The four modes supported by the 2915 include Q-Ignore, Q-Stop, Q-Repeat and Q-
Scan. The following describes each transfer mode.

The Q-Stop Block Transfer Mode continues to transfer 2 block of CAMAC write or read data as long as
valid Q-responses (Q=1) are received and the transfer count has not been exhausted. If a No-Q condition
occurs during a CAMAC block write operation, the transfer terminates immediately. If t No-Q condition
occurs during a CAMAC block read operation, the transfer terminates as soon as the last valid (Q=1) data
word is transferred to PCI memory.

The Q-Ignore Block Transfer Mode continues to transfer data to or from a CAMAC module as long as the
transfer count is not exhausted. The 2915 ignores the CAMAC Q-response during the transfer of data.

The Q-Repeat Block Transfer Mode continues to transfer data until the transfer count is exhausted or a Q-
Repeat timeout occurs. During a Q-repeat operation, the dataway cycle for the current data word is
repeated until a CAMAC Q-response of one is returned.

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

For CAMAC write operations, a CAMAC dataway cycle is executed for each data word to be written until
a CAMAC Q-response of one is received. After a Q=1 is received, the next CAMAC write data word is
retrieved and the process repeats.

For CAMAC read operations, a CAMAC dataway cycle is repeated until a CAMAC Q-response of one is
received. After receiving the Q=1 response, the PCI interface stores the data in memory and then executes
additional dataway cycles to obtain subsequent data. This process continues for each data word until the
transfer count is exhausted.

The Q-Scan Block Transfer Mode continues to transfer data until the transfer count is exhausted or a
Station Number Greater Than 23 (N>23) occurs. When the Q-Scan operation is started, the CAMAC
command specified by the Station Number, Subaddress and Function code is executed. During the Q-Scan
operation, the Function code (F) remains unchanged, but the CAMAC Station Number (N) and Subaddress
(A) are altered during the scan. The N and A are altered as follows:

Aftera CAMAC command is executed, if the CAMAC Q-response is 0, the Station Number N)is
incremented and the Subaddress (A) is reset to zero for the subsequent operation. If the CAMAC Q-
response is 1, the Subaddress is incremented, or, if the Subaddress was 15, it is reset to zero and the Station
Number is incremented.

The Q-Scan operation continues in this mode until the transfer count is exhausted, or the Q-Scan operation
is forced to scan past slot 23 in the chassis.

The Q-Scan operation provides an efficient mechanism to transfer data to/from channel oriented modules
that allow their data to be accessed at incrementing subaddresses. These channel oriented accessible

modules should be grouped together to facilitate better performance of the block transfer operation.

To specify the type of block transfer operation to perform, the user can use the following #defines.

__ Description
Selects the Q-Stop Block Transfer Mode
QIGN Selects the Q-Ignore Block Transfer Mode
QRPT Selects the Q-Repeat Block Transfer Mode
QSCN Selects the Q-Scan Block Transfer Mode

Q-mode Block Transfer Selection

3.5.2 Data Word Size

The 2915 supports two data word sizes, 16 bit CAMAC data words and 24-bit CAMAC data words. When
allocating memory locations for the write and read buffers, the user must ensure that the buffers are
longword (32-bits) aligned. This restriction is in place due to the fundamental Direct Memory Access
(DMA) circuitry on the 2915. When a block transfer operation requires the movement of data to/from host
computer memory, it always transfers 32-bits at a time. This transfer scheme allows an increase in
performance over transferring 16-bits of data at a time.,

For 16-bit block transfer operations, the 32-bit host computer memory word ‘holds’ two 16-bit CAMAC:
data words. The lower shortword of the 32-bit memory location, bits 15 through 0, contains the first 16-bit
CAMAC data word and the upper shortword of the 32-bit memory location, bits 31 through 16, contains
the second 16-bit CAMAC data word. This organization continues until the last block transfer word is
reached. If an odd number of 16-bit data words is required using a block transfer write to CAMAC, the last
shortword is ignored. During CAMAC read operations that require an odd number of 16-bit CAMAC data

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

words, a shortword set to zero is appended to the last DMA operation to memory to pad the unused upper
shortword of the last longword.

The following #defines can be used to specify the CAMAC data word size during block transfer operations
that are downloaded into a list processing sequence.

#define | _ Description
WTS16 Selects 16-bit CAMAC Data Word Size
WTS24 Selects 24-bit CAMAC Data Word Size

CAMAC Data Word Size Selection

3.6 Status Array

With the control and status calls, you can Initialize or Clear a crate, change the state of crate Inhibit, read
crate status, and read the status of the last CAMAC operation.

All of the library calls return a status array. This array contains information on the last call to the CAMAC
routines. At the simplest level, it indicates whether the /O request was successfully performed. If the first
element of the status array is odd, it indicates a successful completion of the I/O operation (no errors).
Additional information on the success or failure of the I/O request in the status array is indicated in the
following table. The error codes follow the Windows operating system standard for error codes as well.
The odd codes were selected as successful status to facilitate users migrating from older operating systems
to prevent the need for modifications if their software tested for odd status.. Note that the function camsg
can be used to decode the returned error number into ASCII text. In the table below the symbolic name for
the status array element is shown along with its decimal array index, starting with 0.

2915 Device Driver & API

Library for Windows 2000 CAMAC Application Programming Interface (API)
STATUS ARRAY
0 Error Status: Contains the returned error code. An odd return status indicates a successful transfer.

ERR Any other value indicates an error or warning.
1 Control and Status Register: Contains the state of the 2915 Control and Status register. This is
copied from the I/O status block. See the I/O status block for the 2915 device driver and the 2915
StaCSR L
hardware manual for a more complete description.
9 Error Status Register: Contains the state of the 2915 Error Status Register. This is copied from
the I/O status block. See the /O status block for the 2915 device driver and the 2915 hardware
StaERS .
manual for a more complete description.
S tai cs List Status Register: Field is zero and is reserved for future KSC use.
A variable using bit 1 to indicate the sum of CAMAC NO-X responses and bit 0 to indicate the sum
4 of CAMAC NO-Q responses for all the CAMAC operations in the Command List. If there were any
StaSum CAMAC NO-Qs, bit zero of StaSum would be set and if there were any CAMAC NO-Xs, bit one of
StaSum would be set. ,
5 A variable returning the number of words not transferred for the last Block Transfer operation. A
zero will be returned if the last Block Transfer operation was successful or if there were no Block
StaCnt . .
Transfers in the Command List.
6 A variable returning the Fortran index into the CCL of the last command in the Command List that
StaLis was executed by the driver.
7 A variable returning the Fortran index into the Data Buffer of the last Data word read or written by
StaDat the driver.
8 A variable returning the total number of Word Count Buffer errors that occurred. This number can
StaWC be greater than the number of Word Count Buffer records.
9 A variable returning the total number of QXE Buffer errors that occurred. This number can be
StaQXE greater than the number of QXE Buffer records.

3.7 Asynchronous Event Handling (LAMS)

In many real-time applications it is necessary to handle asynchronous events such as events which occur
outside the computer and sometimes outside of the CAMAC front-end. For example, an application may
require notification when a discrete input from some device changes state, when some amount of data has
been stored in a FIFO memory in a module, or when a transient recorder has completed recording a wave
form. The LAM or Look-At-Me is the CAMAC mechanism for signaling of asynchronous events. The
CAMAC LAM is delivered to the host computer system as a hardware interrupt.

In the computer, the application software must receive notification of the asynchronous event. The
operating system mechanism for asynchronous event notification is the Asynchronous Procedure Call
(APC). The cxlam routine is provided to notify the CAMAC driver of the module and crate that will be
generating LAMs and the operating system of the address of the routine to be dispatched when the event

occurs.

The cxlam routine with LAM- Types 2 and 3 are new with this release of the driver and is the
preferred LAM handling mechanism. The calam routine with LAM_Types 0 and 1 continue to be
supported for compatibility with previous releases. LAM Types 2 and 3 are more powered and
can handle most modules whose design conform to the IEEE 538 CAMAC Standard. LAM-T: Ypes
0 and 1 can only handle LAMs from modules that provide a single control command to clear LAM
and disable LAM.

The operating system can only handle a limited number of outstanding (undelivered) APCs at any given
time. The delivery of the LAMs to the user process is done with the use of the DEMAND process and NT
pipes. All LAMs that are expected to be processed must be configured by the Demand process. The

10

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

Demand Process is responsible for enabling LAM recognition for any CAMAC crates that are to process
LAMs. The actual enabling of a particular CAMAC device in a crate is the responsibility of the user.

11

2915 Device Driver & AP!
Library for Windows 2000 CAMAC Application Programming Interface (API)

4 CAMAC Application Programming Interface (API)

4.1 CAMAC Operational Routines

4.1.1 cab16

Syntax

“ int cab16(void **hdiptr,
short int *c,
short int *n,
short int *a,
short int *f,
short int *mode,
short int *data,
long int *dataln,
int errarr]);

Purpose
The cabl6 function is used to execute a 16-bit block transfer write or read operation.

Description

The cab16 function performs block transfer operations to or from a CAMAC module(s) utilizing 16-bit
data words. For the 16-bit data transfers, only the lower 16-bits of the 24 bit CAMAC data word is used
during the transfer. The array used to move data to or from the module must be longword aligned. Since
the PCI bus is organized as 32-bit data words, the array for data must be aligned on a longword boundary
for facilitating Direct Memory Access (DMA). If an odd number of 16-bit data words is to be transferred,
the application software must allocate an additional 16-bit data entry in host memory to accommodate the
re-alignment of data onto a longword boundary. When the 2915 executes a CAMAC block transfer
operation with a transfer count specification that is odd, an additional 16-bit data word is sent to memory to
force the longword alignment,

The cab16 function supports all four types of block transfer operations. These four modes consist of Q-
Ignore, Q-Stop, Q-Repeat and Q-Scan. Please refer to the 77 ransfer Mode section of this manual for details
on each operating mode. .

Parameters
Parameter Name

__ Direction _ Descriptio

turned by ;:aopen function

Handle re

12

2915 Device Driver & API

Library for Windows 2000

CAMAC Application Programming Interface (API)

_ Parameter Name | Direction . Desecription .
c Input Address of the chassis to be accessed
n Input Slot number of the module to be accessed
a Input Subaddress within the module to be accessed
f Input Function code to be performed
Type of CAMAC block transfer to perform. Please refer to
mode Input Transfer Mode section of this manual for additional
information.
data Input/Output CAMAC Write (Input) or Read (Output) data
dataln Input Requested number of CAMAC data 16-bit data words
errarr Output Returned l‘O-eleme.nt status array. Please refer to Status Array
section of this manual for additional information.

The mode parameter in the cabl6 function is used to specify the CAMAC block transfer Q-mode and a
specification as to the termination technique when a No-X condition occurs. The following table shows the
available selections as #defines in the kscuser.h include file. Note that only one defined Q-mode can be
specified for each block transfer.

_ fHdefine | .. Deserippon = =
QSTP Selects the Q-Stop Block Transfer Mode
QIGN Selects the Q-Ignore Block Transfer Mode
QRPT Selects the Q-Repeat Block Transfer Mode
QSCN Selects the Q-Scan Block Transfer Mode

Q-mode Block Transfer Selection

Return Values

ERRI4]

ERR701

ERR703

ERR704

ERR706

ERR709

ERR714

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.

Data buffer not long word aligned.

An invalid CAMAC sub-address (A) was found. The CAMAC subaddress was either
less than 0 or greater than 15.

An invalid CAMAC block transfer type was found. The legal block transfer types are
QSTP, QIGN, QRPT, and QSCN with corresponding values of 0, 8, 16, and 24,

respectively.

An invalid CAMAC function code (F) was found. The CAMAC Function code was
either less than 0 or greater than 31.

An invalid CAMAC slot number (N) was found. The slot number was either less than 1

or greater than 30.

A CAMAC block transfer control operation was specified which is invalid. Oﬂly
CAMAC Read or Write block transfers are allowed. The function code (F) for the
block transfer was either between 8 and 15 inclusive or between 24 and 3 1 inclusive (8

<F<I150r24 <F<31).

Illegal CAMAC crate number.

13

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"
#include "kscuser.h”
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

main()
{ .
int status; // return status from the functions
char devname[] = "kpa00";
int *hdl; // Handle for operations
int errstat{ STAMAX]; // array with list of errors
short n; // slot
short a; // sub address
short f; // function
short c; /l crate
short gmode; /I qmode for transfer
short ShortWriteBuffer[8192]; // short write data buffer
unsigned long TransferCount; // transfer count for block
/
// Open the device
/
status = caopen(&hdl, devname, errstat);
/"
// Check if device opened properly
/

if ((status & 1) ==0)

printf("CAOPEN, error opening device = %s\n", devname);
camsg(errstat);
exit(status);

}
1

// Setup the parameters for the block transfer
/"

c=1;

n=1;

=16;

a=0;

gmode = QSTP ;

TransferCount = 100;

status = cab16(&hdl, &c, &n, &a, &f, &qmode, ShortWriteBuffer,
&TransferCount,errstat);

if (status & 1) 1= 1)

14

2915 Device Driver & API

Library for Windows 2000 CAMAC Application Programming Interface (API)
{
printf("****ERROR**** cab16\n");
camsg(errstat);
exit(status);
}
I
// Close the device
/

status = caclos (&hdl, errstat);
if ((status & 1) I=1)

printf("****ERROR**** caclos\n");

camsg(errstat);
exit(status);

},
e

4.1.2 cab24

Syntax

int cab24(void **hdlptr,
short int *c,
short int *n,
short int *a,
short int *f,
short int *mode,
short int *data,
int *dataln,
int errarr[]);

Purpose
The cab24 function is used to execute a 24-bit block transfer write or read operation.

Description

The cab24 function performs block transfer operations to or from a CAMAC module(s) utilizing 16-bit
data words. For these 24-bit data transfers, the entire 24-bits of the 24-bit CAMAC data word are used
during the transfer. The array used to move data to or from the module must be longword aligned. Since
the PCI bus is organized as 32-bit data words, the array for data must be aligned on a longword boundary
for facilitating Direct Memory Access (DMA). Due to the architecture of the 2915, each 24-bit CAMAC
data word is contained in a single 32-bit PCI memory word. The additional 8-bits of the PCI memory data
word are ignored. When CAMAC read operations are performed, the upper 8 bits of the 32-bit PCI
memory word are padded with zeros.

The cab24 function supports all four types of block transfer operations. These four modes consist of Q-

Ignore, Q-Stop, Q-Repeat and Q-Scan. Please refer to the Transfer Mode section of this manual for details
on each operating mode.

15

2915 Device Driver & API

Library for Windows 2000 CAMAC Application Programming Interface (API)
Parameters
_ Parameter Name | Direction . . . ,]
hdlptr Input Handle returned by caopen function
c Input Address of the chassis to be accessed
n Input Slot number of the module to be accessed
a Input Subaddress within the module to be accessed
f Input Function code to be performed
Type of CAMAC block transfer to perform. Please refer to
mode Input Transfer Mode section of this manual for additional
information.
data Input/Qutput CAMAC Write (Input) or Read (Output) data
dataln Input Requested number of CAMAC data 16-bit data words
errarr Output Returned 1.0-eleme.nt status array. P!ease refer to Status Array
section of this manual for additional information.

The mode parameter in the cab24 function is used to specify the CAMAC block transfer Q-mode and the
termination technique when a No-X condition occurs. The following table shows the available selections
as #defines in the kscuser.h include file. Note that only one defined Q-mode can be specified for each
block transfer.

_ #define | _ Deseription
QSTP Selects the Q-Stop Block Transfer Mode
QIGN Selects the Q-Ignore Block Transfer Mode
QRPT Selects the Q-Repeat Block Transfer Mode
QSCN Selects the Q-Scan Block Transfer Mode

Q-mode Block Transfer Selection

Return Values

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.

Data buffer not long word aligned.

ERRI41

An invalid CAMAC sub-address (A) was found. The CAMAC subaddress was either
ERR701 less than 0 or greater than 15.

An invalid CAMAC block transfer type was found. The legal block transfer types are

QSTP, QIGN, QRPT, and QSCN with corresponding values of 0, 8, 16, and 24,
ERR703 .

respectively.

An invalid CAMAC function code (F) was found. The CAMAC Function code was
ERR704 either less than 0 or greater than 31.
ERR706 An invalid CAMAC slot number (N) was found. The slot number was either less than 1

or greater than 30.

16

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

A CAMAC block transfer control operation was specified which is invalid. Only
CAMAC Read or Write block transfers are allowed. The function code (F) for the

ERR709 block transfer was either between 8 and 15 inclusive or between 24 and 31 inclusive (8
<F<150r24 <F<31).

ERR714 Illegal CAMAC crate number.

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

main()
{
nt status; // return status from the functions
char devname[] = "kpa00";
int *hdl; // Handle for operations
int errstatf STAMAX]; // array with list of errors
short n; // slot
short a; // sub address
short f; // function
short ¢; /! crate
short gmode; /I q mode for transfer
int LongWriteBuffer[8192]; // long write data buffer
unsigned long TransferCount; // transfer count for block
/
// Open the device
"
status = caopen(&hdl, devname, errstat);
/"
// Check if device opened properly
/"
if ((status & 1) == 0)
{
printf("CAOPEN, error opening device = %s\n", devname);
camsg(errstat);
exit(status);
}
"
// Setup the parameters for the block transfer
/W

17

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (AP)

qmode = QSTP;

TransferCount = 100;

status = cab24(&hdl, &c, &n, &a, &f, &qmode, LongWriteBuffer,
&TransferCount,errstat);

if (status & 1) I=1)

printf("****ERROR**** cab24\n");

camsg(errstat);
exit(status);
/
// Close the device
/A

status = caclos (&hdl, errstat);
if ((status & 1) 1= 1)

printf("****ERROR**** caclos\n");

camsg(errstat);
exit(status);

4.1.3 caclos

Syntax
int caclos(void **hdlptr,
int *error
Purpose

The caclos function is used to close the current CAMAC session with the 2915.

Description

The caclos function is used to unassign a channel from the CAMAC 2915 device and deallocate the per-
process space for the controller. This routine is the opposite of the caopen routine that opens a device for
communication. Once the caclos is executed, the device session is closed.

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

Parameters

“Parameter Name | _ Direction = Descriptio
hdlptr Handle returned by caopen function
error Error Code

Return Values

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.

ERR603 The caclos error is unknown.

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"
#include "kscuser.h”
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

main()
{
int status; // return status from the functions
char devname[] = "kpa00";
int *hdl; // Handle for operations
int errstat{ STAMAX]; // array with list of errors
int lwdata; // long write data
short n; /' slot
short a; // sub address
short f; // function
short ¢; // crate
/!
// Open the device
/
status = caopen(&hdl, devname, errstat);
/7
/I Check if device opened properly
/7

if ((status & 1) == 0)
{

printf("CAOPEN, error opening device = %s\n", devname);
camsg(errstat);
exit(status);

}

19

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

/!
// Setup the parameters for the single transfer
I
c=1;
n=1;
f=16;
a=0;
Iwdata = 0x112233;
status = cam24(&hdl, &c, &n, &a, &f, &lwdata, errstat);
if (status & 1) 1= 1)

{
printf("****ERROR**** cam24\n™);
camsg(errstat);
exit(status);
}
/!
// Clédse the device
1/

status = caclos (&hdl, errstat);
if ((status & 1) 1= 1)
{

printf("****ERROR**** caclos\n");

camsg(errstat);
exit(status);

4.1.4 cactrl

Syntax
int cactrl(void **hdlptr,
short int *c,
short int *func
int errarr{]);
Purpose

The cactrl function is used to execute various CAMAC Crate Controller functions.

Description

The cactrl function generates CAMAC crate-wide operations. These operations include the CAMAC
Initialize (Z) cycle, the CAMAC Clear (C) cycle, and setting/clearing the CAMAC Inhibit (I) signal. These
operations are addressed to the specified CAMAC Crate Controller by the 2915 with the station number set

20

2915 Device Driver & APl
Library for Windows 2000

CAMAC Application Programming Interface (API)

to 30 (N=30). All CAMAC Crate Controllers have an internal register accessible at N=30 for generating .

crate-wide operations.

Parameters

_ Parameter Name | Direction | = Description
hdlptr Input Handle returned by caopen function
c Input Address of the chassis to be accessed
func Input Requested crate-wide operation. (see Note 1)
errarr Output Returned I_O-elemept status array. Ple'ase rgfer to Status Array
section of this manual for additional information.

Note 1: There are 4 valid values that can be used with this command. These #defines are found in the
kscuser.h include file and are listed below.

_ Hdefine | ... Descripon. = =
INIT Execute a CAMAC Initialize (Z) cycle
CLEAR Execute a CAMAC Clear(C) cycle
SETINH Set the CAMAC Inhibit (1) signal
CLRINH Clear the CAMAC Inhibit (1) signal

Return Values

ERR224

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.
Illegal CAMAC crate number.

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"”
#include "cmdlist.h"

devname[] = "kpa00";

main()
{
int status;
char
int *hdl;
int errstat[STAMAX];
short ctrlval;
short ¢;
I

// return status from the functions

// Handle for operations
/I array with list of errors
/I cactrl value

/I crate

21

2915 Device Driver & API

Library for Windows 2000 CAMAC Application Programming Interface (API)

// Open the device
/!
status = caopen(&hdl, devname, errstat);

"
// Check if device opened properly
/

if ((status & 1) == 0)

{

printf("CAOPEN, error opening device = %s\n", devname);

camsg(errstat);
exit(status);
}
/
// Setup the parameters for the control call
/A
c=1;

ctrlval=INIT;
status = cactrl (&hdl, &c, &ctrlval, errstat);
if (status & 1) 1= 1)

{
printf("****ERROR**** cactrl\n");
camsg(errstat);
exit(status);
}
/!
// Close the device
//

status = caclos (&hdl, errstat);
if ((status & 1) I= 1)
{

printf("****ERROR**** caclos\n");

camsg(errstat);
exit(status);

4.1.5 calam

Syntax

int calam(
void **hdlptr,
short int *c,
short int *lam _id,
short int *lam_type,
short int *priority,
void (*apc_addr)(),
void *parm,

22

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

short *cIrN,
short *clrA,
short *cIrF,

short *dsbN,
short *dsbA,
short *dsbF,
int *error);

Purpose

The calam function is used to register a LAM for subsequent asynchronous notification of an application
program.

Description

The calam function requests the Demand Process to service LAMs for the LAM specified in the call to the
function. The process of enabling a LAM to be serviced by the Demand Process is called booking a LAM.
When the LAM pipe message is received, an Asynchronous Procedure Call (APC) is made to the Demand
Process which disables the LAM and calls the user specified APC routine. Prior to executing the user APC
routine, the Demand Process APC executes the CAMAC commands passed into the calam routine at the
time is was booked. The Demand Process APC will execute either the Clear or Disable CAMAC command
passed into the routine based on the setting of the lam_type. By setting the lam_type to a 0 (Type 0), the
Demand Process will unbook the LAM and issue the disable CAMAC command to the specified module.
When the lam_type is set to a 1 (Type 1), the Demand Process will leave the LAM booked and issue the
clear CAMAC command to the specified module.

In general, it is up to the user application program to actually enable a module to generate a LAM. The
LAM Mask Registers in the crate controller and other associated enables for the LAM are taken care of by
the calam functions. The command to enable the LAM generation within a module should be placed in the
application program after the calam function is used. The Demand Process will enable LAMs for a crate if
they are not already enabled from a previous request to enable another LAM in the same crate.

If the LAM for a module in not enabled by the user application, a LAM that it generates will never be
serviced. If the user application enables the modules LAM prior to calling the calam routine, the LAM
could be generated by the module prior to it being booked. This situation MUST be avoided as the results
of this sequence may be erroneous.

Once the Demand Process has completed processing its portion of the LAM service, it passes control onto
the user specified APC. The user’s APC is called with 4 arguments that define specific information
regarding the source of the LAM. This information contains the Station Number (N) of the device
generating the LAM, the handle returned from the caopen routine of the parent program that called the
calam, the chassis that generated the LAM, and the user specified parameter passed into the calam routine
when it was booked. Please refer to the Demands section of this manual for additional information
regarding the APC calling conventions.

23

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming interface (API)

Parameters

__Parameter Name
hdlptr

en function

kHandle refurned by caop

c Input Address of the chassis to be accessed

lam id Input Specifies the Station Number (N) of the LAM to be booked
Specifies the type of LAM booking. Type 0 indicates an

lam_type Input unbook and disable and a Type 1 indicates a remain booked
and clear LAM

priority Input I;lgz Sﬁl{ﬁg{;’tg&fd. This parameter is for legacy parameter

This parameter specifies the address of the APC to be called
once the LAM is generated.

arm Input This value is passed onto the APC once the LAM is serviced.
Specifies the Station Number (N) to be accessed when a Type

apc_addr Input

cIrN Input 1 LAM is serviced

Specifies the Subaddress (A) to be accessed when a Type 1
clrA Input LAM is serviced

Specifies the Function (F) to be performed when a Type 1
clrF Input LAM is serviced

Specifies the Station Number (N) to be accessed when a Type
dsbN Input 0 LAM is serviced

Specifies the Subaddress (A) to be accessed when a Type 0
dsbA Input LAM is serviced
. Input Spemﬁes the. Function (F) to be performed when a Type 0

LAM is serviced
p— Error code

Return Values

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.
ERR714 Illegal CAMAC crate number.

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

/!

/ Global variable definitions....shared between main and APC routine

/

int *hdl; // Handle for operations

24

2915 Device Driver & API

Library for Windows 2000 CAMAC Application Programming Interface (API)

HANDLE hEvent; // So APC can wake up mainline

void ApcRoutine (int *dmd _id,
struct KSC_handle *handle,
int chassis,
void *UserArg);

main()
{
int status; // return status from the functions
int iStatus;
int Ipent=0;
int UserParm;

char devname[] = "kpa00";

int “errstatf STAMAX]; // array with list of errors
short n; // slot

short a; /I subaddress

short f; /! function

short c; /I crate

shortn_clr,n_dis;

short a_clr,a_dis;

short f_clr,f dis;

short ¢ 3291 =1; // crate address for 3291
shortn_3291=1; // slot number for 3291
short swdata; /1 short write data
short srdata; // short read data

short nLamType;

short nLamPriority;

short fix;

fix=n_3291-1;

/"
// Open the device
/

status = caopen(&hdl, devname, errstat);
if ((status & 1) == 0)
{

printf("CAOPEN, error opening device = %s\n", devname);
camsg(errstat);
exit(status);

i
// Crate event flag & check status
/"
hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

if (NULL == hEvent)

{
iStatus = GetLastError();
printf("Error creating event object: 0x%x\n", iStatus);
exit(iStatus);

}

25

2915 Device Driver & API

Library for Windows 2000

/"

CAMAC Application Programming Interface (API)

// Set up the APC for the LAM (Book the LAM)

/"

n_clr=n_3291;
f clr=10;
a_clr=0;
n_dis=n 3291;
f dis = 24,
a_dis =0;

nLamType = 1;
nLamPriority = -1;
iStatus = calam(&hdl,
&c_3291,
&n_3291,
&nLamType,
&nlLamPriority,
&ApcRoutine,
&UserParm,
&n_clr,
&a clr,
&f _clr,
&n_dis,
&a_dis,
&f dis,
errstat);

if ((iStatus & 1) == 0)
{

// filled in but not used for type 1

// clear but remain booked

// not used

// handle from caopen

/I crate with our 3291

// slot containing 3291

// forever let us process it

// not used, but must be here
/1 APC to call

// user parameter

// station number for clear

// subaddress for clear

// function for clear

// station number for disable

// subaddress for disable

// function code for disable

/{ CAMAC status

printf("Failure to book the 3291 LAM\n");

camsg(errstat);
exit(iStatus);

}
while (TRUE)

exit(iStatus);
}
/
// Generate a LAM on the 3291
//
c=1;
n=n_3291;
=14,
a=(0;
iStatus = cam16(&hdl,
&c,
&n,
&a,

iStatus = ResetEvent(hEvent);

if (iStatus = FALSE)
{

iStatus = GetLastErroz();

printf("Error Resetting Event: 0x%x\n", iStatus);

// 'handle from caopen
// crate for 3291

// slot number for 3291
// subaddress

26

2915 Device Driver & AP}

Library for Windows 2000 CAMAC Application Programming Interface (API)
&f, // function code
&srdata, // data space
errstat); // error array

/

// Waiting for a LAM

//

printf("Waiting for a LAM\n");
iStatus = WaitForSingleObject(hEvent, INFINITE);

if (WAIT _OBJECT 0 != iStatus)
{
printf("Error in WaitForSingleObject: 0x%x\n", iStatus);
cwait();

exit(iStatus);

priintf{"Object Received \n");
¥
} // end of main
// APC procedure.
/
// This routine is called when a LAM is received from the demand process
// as a result of the 3291 getting a LAM.
/
void ApcRoutine(int *dmd_id,
struct KSC handle *handle,
int chassis,
void *user_arg)
{
/
// Set the event so mainline will continue
I
printf("APC triggered\n");
SetEvent(hEvent);

}

27

2915 Device Driver & API

Library for Windows 2000

4.1.6 cam1i6

CAMAC Application Programming Interface (API)

Syntax

int cam16(

void **hdlptr,
short int *c,
short int *n,
short int *a,
short int *f,
short int *data,
int errarr[]);

Purpose

The cam16 function is used to execute a 16-bit single transfer write, read or control operation.

Description

The cam6 function performs a single transfer operation to the CAMAC crate. This command
accommodates write, read and control operations. All data words moved using this command are 16-bits in

width. Therefore, only the lower 16-bits of the 24

function.

-bit CAMAC data word can be accessed using this

Parameters

Parameter Name |

. Descripti .
Handle returned by caopen function

hdiptr Input
c Input Address of the chassis to be accessed
n Input Slot number of the module to be accessed
a Input Subaddress within the module to be accessed
f Input Function code to be performed
This parameter either specifies CAMAC write data for write
data Input/Output operations to the CAMAC crate or read data returned from
executing a CAMAC read operation.
errarr Output Returned l_O-element status array. Please refer to Status Array
section of this manual for additional information.

Return Values

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.

28

2915 Device Driver & API

Library for Windows 2000

CAMAC Application Programming Interface (API)

An invalid CAMAC subaddress (A) was found. The CAMAC subaddress was either

ERR701 less than O or greater than 15.
An invalid CAMAC function code (F) was found. The CAMAC Function code was
ERR704 either less than 0 or greater than 31.
An invalid CAMAC slot number (N) was found. The slot number was either less than 1
ERR706 or greater than 30.
ERR714 Illegal CAMAC crate number.
Example

#include <stdio.h>
#include <stdlib.h>
#include <string h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

main()
{
int status; // return status from the functions
char devname[] = "kpa00";
int *hdl; // Handle for operations
int errstat[STAMAX]; /I array with list of errors
short n; /] slot
short a; /! sub address
short £} // function
short ¢; /! crate
short swdata; // short write data
/!
// Open the device
/!
status = caopen(&hdl, devname, errstat);
/!
// Check if device opened properly
/
if ((status & 1) ==0)
{
printf("CAOPEN, error opening device = %s\n", devname);
camsg(errstat);
exit(status);
}
/"
// Setup the parameters for the single transfer
/
c=1;

29

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

n=1;
=16;
swdata = 0x1122;

status = cam16(&hdl, &c, &n, &a, &f, swdata,errstat);

if (status & 1) 1= 1)
{

printf("****ERROR**** cam16\n");

camsg(errstat);
exit(status);

I
/! Close the device
//

status = caclos (&hdl,

if ((status & 1) I=1)
("

errstat);

printf("****ERROR**** caclos\n");

camsg(errstat);
exit(status);

4.1.7 cam24

Syntax

int cam24(

void **hdlptr,
short int *c,
short int *n,
short int *a,
short int *f,
int *data,

int errarr{]);

Purpose

The cam24 function is used to execute a 24-bit single transfer write, read or control operation.

Description

The cam24 function performs a single transfer operation to the CAMAC crate. This command
accommodates write, read and control operations. All data words moved using this command are 24-bits in

width.

30

2915 Device Driver & API!
Library for Windows 2000

CAMAC Application Programming Interface (API)

Parameters
__ Parameter Nam irecti ¢ .

hdlptr Input Handle returned by caopen function
c Input Address of the chassis to be accessed
n Input Slot number of the module to be accessed
a Input Subaddress within the module to be accessed
f Input Function code to be performed

This parameter either specifies CAMAC write data for write
data Input/Output operations to the CAMAC crate or read data returned from
executing a CAMAC read operation.
errarr Output Returned l_O-element status array. quase refer to Status Array
section of this manual for additional information.

Return Values

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.

An invalid CAMAC sub-address (A) was found. The CAMAC subaddress was either

ERR701 less than 0 or greater than 15.
An invalid CAMAC function code (F) was found. The CAMAC F unction code was
ERR704 either less than 0 or greater than 31.
An invalid CAMAC slot number (N) was found. The slot number was either less than 1
ERR706 or greater than 30.
ERR714 Illegal CAMAC crate number.
Example
#include <stdio.h>
#include <stdlib.h>

#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

main()
{
int status;
char devname[] = "kpa00";

// return status from the functions

31

2915 Device Driver & API

Library for Windows 2000 CAMAC Application Programming Interface (API)
int *hdi; // Handle for operations
int errstatf STAMAX]; // array with list of errors
short n; /Il slot
short a; // sub address
short f; // function
short c; /l crate
int lwdata; // long write data

/!

// Open the device

I

status = caopen(&hdl, devname, errstat);

/"
/1 Check if device opened properly
/"

if ((status & 1) = 0)

(-

printf("CAOPEN, error opening device = %s\n", devname);

camsg(errstat);
exit(status);

}
I

// Setup the parameters for the single transfer
/"

a=0;
Iwdata = 0x112233;

status = cam24(&hdl, &c, &n, &a, &f, &lwdata, errstat);

if (status & 1) 1= 1)
{

printf("****ERROR**** cam24\n");

camsg(errstat);
exit(status);

/"

// Close the device

/

status = caclos (&hdl, errstat);
if ((status & 1) !=1)
{

printf("****ERROR**** caclos\n");
camsg(errstat);
exit(status);

32

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

4.1.8 camsg

Syntax

int camsg(int *error);

Purpose

The camsg function is used to translate error codes received from various CAMAC API functions and print
a message to the standard output device.

Description

The camsg function can be called whenever an error is detected as a result of executing a CAMAC API
function. An error code returned from the API functions can be printed to the standard output device. The
printed error may be as a result of an error from the device driver, the API, or from the operating system.

Parameters

_ Parameter Name | Directior

| Decrintie
Completion status or error code returned from a previous
function call to a CAMAC API routine.

Return Values
For a comprehensive list, please refer to the Error Codes section of this manual.

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

main()

33

2915 Device Driver & APl

Library for Windows 2000 CAMAC Application Programming Interface (API)
{
nt status; // return status from the functions
char devname[] = "kpa00";
int *hdl; // Handle for operations
int errstat{f STAMAX]; // array with list of errors
1
// Open the device
/
status = caopen(&hdl, devname, errstat);
/
// Check if device opened properly
/

if ((status & 1) == 0)
{

printf("CAOPEN, error opening device = %s\n", devname);

camsg(errstat);
exit(status);
}
/"
// Close the device
/

status = caclos (&hdl, errstat);
if ((status & 1) 1= 1)
{

printf("****ERROR**** caclos\n");
camsg(errstat);
exit(status);

34

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

4.1.9 caopen

Syntax
int caopen(void **hdlptr,
char *device,
int *error

Purpose
The caopen function opens a session with the 2915.

Description

The caopen function assigns a channel to a device and initializes the CAMAC library so that subsequent
CAMAC operations may be executed. This function must be called at the start of a program before
attempting any CAMAC operations. Once the channel has been open to the device, it should not be re-
opened until the channel is unassigned by a call to the caclos function.

The caopen function initializes the handle parameter. The handle is a pointer to a process and controller
specific region that has been allocated for the user application. The caopen should be called as part of the
process’s initialization. The handle obtained as a result of the caopen function should be passed to any
other CAMAC API function requiring use of the handle. The caclos function is used to close the channel
and release this per process handle and controller space.

The second parameter in this function call is the name of the CAMAC driver associated with the 2915. In
order to open a valid connection to the driver, the device name of kpa00 must be used.

Parameters

Parameter Name | Direcion | = .
hdlptr Input Handle returned by caopen function
device Tnput Character string contgining the name of the device to be
opened. The device name for the 2915 is kpa00.
error Output Returned value

Return Values

The most common error codes are listed here. For a comprehensive list, please refer
to the Error Codes section of this manual.

35

2915 Device Driver & API
Library for Windows 2000

KSC_BAD ARG

CAMAC Application Programming Interface (API)

One or more of the arguments is not readable or writeable.

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

main()

{

int status;

// return status from the functions

char devname[] = "kpa00";

int *hdl;

int errstat[STAMAX];
I
// Open the device
/

// Handle for operations
// array with list of errors

status = caopen(&hdl, devname, errstat);

/"

// Check if device opened properly

/
if ((status & 1) == 0)

printf("CAOPEN, error opening device = %s\n", devname);

camsg(errstat);
exit(status);
}
/"
// Close the device
/"

status = caclos (&hdi, errstat);

if ((status & 1) I=1)
{

printf("****ERROR**** caclos\n");

camsg(errstat);
exit(status);

36

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

4.1.10 ccstat

Syntax
int ccstat(void **hdlptr,
short int *c,
int data[]
int errarr[]);
Purpose

The cestat function is used to retrieve the current status of the 3922 Crate Controller.

Description

The ccstat function performs a read operation to the 3922 Crate Controller to determine its current status.
The status information returned includes the state of the CAMAC Inhibit (T) line, the state of the Service
Request Enable (LAM Enable) signal, the current LAM pattern. And the entire 3922 Control/Status
Register contents. As a result of the ccstat function, the 2915 executes various CAMAC commands
directed at Station Number (N) 30 of the target crate. The N=30 commands are internal operations directed
at the 3922. Therefore, no CAMAC dataway cycles occur as a result of this command.

The third argument in the cestar function returns a pointer to four 32-bit words. The contents of these
words are described below.

Word 1
Bit 31 Bit 1 Bit 0
0 INH
Word 2
Bit 31 Bit 1 Bit 0
0 SRR
ENA
Word 3 .
)51 qic]) Em—— Bit 24 | Bit23 Bit0
0 LAM Status 24 through 1
Word 4
Bit 15 | Bit 14 Bit 13 | Bit 12-10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5-3 Bit2 | Bit 1-0
OFF SRR RD)
SLP | RSVD LINE 0 124 ENA RSVD INH 0 INH 0

INH —Read as a 1 if the 3922 is asserting the CAMAC Inhibit (I) signal.
SRR ENA — Read back as a 1 if the Service Request on the 3922 is enabled.
LAM Status 24 —] are the LAM Status bits reflecting the current state of the CAMAC LAM signals.

37

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

RD INH — Read back as a 1 if the CAMAC Inhibit (1) signal is asserted by any module.
RSVD are reserved bits.

L24 — Read back as a one when Internal LAM 24 is set.

OFF LINE ~ Read back as a 1 when the 3922 front panel switch is in the Off-Line position.
SLP —Read back as a one is a Selected LAM is present in the crate.

Parameters

. Parameter Name | irectio - __ Deseript
hdlptr Input Handle returned by caopen function
c Input Address of the chassis to be accessed

Array of four 32-bit words reflecting the current state of the
3922 Crate Controller.
Returned 10-element status array. Please refer to Status Array
section of this manual for additional information.

data Output

errarr Output

Return Values

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.

Data buffer not long word aligned.

ERRI41
ERR601 An invalid channel number was specified. The passed handle is invalid.
An invalid CAMAC sub-address (A) was found. The CAMAC subaddress was either
ERR701 less than 0 or greater than 15.
An invalid CAMAC function code (F) was found. The CAMAC Function code was
ERR704 either less than 0 or greater than 31.
An invalid CAMAC slot number (N) was found. The slot number was either less than 1
ERR706 or greater than 30.
ERR714 Iilegal CAMAC crate number.
Example
#include <stdio.h>
#include <stdlib.h>

#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

38

2915 Device Driver & API

Library for Windows 2000 CAMAC Application Programming Interface (API)
main()
{
int status; // return status from the functions
char devname[] = "kpa00";
int *hdl; /I Handle for operations
int errstat{f STAMAX]; /I array with list of errors
int CrateStatus[4]; // cestat returns
short c; // crate
/"
// Open the device
/
status = caopen(&hdl, devname, errstat);
/"
// Check if device opened properly
/A

if ((status & 1) == 0)
{

printf("CAOPEN, error opening device = %s\n", devname);

camsg(errstat);
exit(status);
}
//
/I Get the current status of the 3922 crate controller
//

status = cestat (&hdl, &c, CrateStatus, errstat);
if (status & 1) 1= 1)

printf("****ERROR**** ccstat\n");

camsg(errstat);
exit(status);

/!

// Close the device

/1

status = caclos (&hdl, errstat);
if ((status & 1) I=1)
{

printf("****ERROR**** caclos\n");

camsg(errstat);
exit(status);

4.1.11 cxlam

Syntax

int cxlam(
void **hdlptr,

39

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

short int *c,

short int *lam_id,

short int *lam_type,

short int *priority,

void (*apc_addr)(int *, struct KSC_handle *,int, void *),
int *error);

Purpose

The cxlam function is used to register a LAM for subsequent asynchronous notification of an application
program. This function call is similar in nature to the calam function call, except that it performs a more
sophisticated LAM processing algorithm in order to service an asynchronous notification. Please refer to
the Demand section of this manual for additional information.

Description

The calam function requests the Demand Process to service LAM:s for the LAM specified in the call to the
function. The process of enabling a LAM to be serviced by the Demand Process is called booking a LAM.
When the LAM pipe message is received, an Asynchronous Procedure Call (APC) is made to the Demand
Process which disables the LAM and calls the user specified APC routine. Prior to executing the user's
APC routine, the Demand Process APC executes a specific sequence of CAMAC commands in order to
clear the pending LAM.

Once the Demand Process receives notification of a LAM, it verifies the crate address that generated the
LAM. Once this is determined, the Demand Process reads the LAM Status Register of the 3922 generating
that generated the LAM. The LAM Status Register is a 24-bit register located on the 3922 that contains a
bit that corresponds to each station number within the crate. With this information, the Demand Process
can determine which module in the crate is requesting service.

The Demand Process will try to clear the source of the LAM within a module by first using the selective
clear operation to the module generating the LAM. The selective clear operation performed is an
F(23)A(12) command using the LAM pattern as the data for the selective clear. If this does not clear the
LAM, then the Demand Process executes an F (11)A(12) command to clear the LAM. If this is not
successful, an F(10)A(0) is then tried. As a last resort, an F(10)A(7) command is executed where
corresponds to the bit positions set in the LAM Status Register.

In general, it is up to the user application program to actually enable a module to generate a LAM. The
LAM Mask Registers and other associated enables for the LAM are taken care of by the cxlam functions.
The command to enable the LAM generation within a module should be placed in the application program
after the cxlam function is used. The Demand Process will enable LAMs for a crate if they are not already
enabled from a previous request to enable another LAM in the same crate.

If the LAM for a module in not enabled by the user application, a LAM that it generates will never be
serviced. If the user application enables the modules LAM prior to calling the cxlam routine, the LAM
could be generated by the module prior to it being booked. This situation MUST be avoided as the results
of this sequence may be erroneous.

40

2915 Device Driver & API

Library for Windows 2000 CAMAC Application Programming Interface (API)
Parameters
Ei’a‘raméter‘Nam:eL;& __Direction | = Description
hdlptr Input Handle returned by caopen function
c Input Address of the chassis to be accessed
lam id Input Specifies the Station Number (N) of the LAM to be booked
Specifies the type of LAM booking. Type 0 indicates an
lam_type Input unbook and disable and a Type 1 indicates a remain booked
and clear LAM
priority Input Not Supported. This parameter is for legacy support
apc_addr Tnput This parameter specifies the address of the APC to be called
— once the LAM is generated.
error Output Error Returmn

«

Return Values

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.

ERR714 Illegal CAMAC crate number.

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

/!

// Global variable definitions....shared between main and APC routine

/

int *hdl; // Handle for operations

HANDLE hEvent; //'So APC can wake up mainline

void ApcRoutine (int *dmd _id,
struct KSC_handle *handle,
int chassis,
void *UserArg);

main()

{

int status; // return status from the functions
int iStatus;

char devname[] = "kpa00";

int errstat{ STAMAX]; /1 array with list of errors

short n; /I slot

41

2915 Device Driver & API

Library for Windows 2000 CAMAC Application Programming Interface (APDH
short a; // sub address
short £ // function
short c; /] crate
short c_3296 =1; // crate address for 3296
shortn_3296 = 6; // slot number for 3296
short swdata; // short write data
short srdata; // short read data
short nLamType;
short nLamPriority;

/

// Open the device

I

status = caopen(&hdl, devname, errstat);
if ((status & 1) == 0)
{

printf("CAOPEN, error opening device = %s\n", devname);
camsg(errstat);
exit(status);

}
/"

// Create event flag for notification of main process

1

hEvent = CreateEvent(NULL, TRUE, FALSE, NULL),

/1

/! Check status of event creation

/

if (NULL == hEvent)

{

iStatus = GetLastError();
printf("Error creating event object: 0x%x\n", iStatus);

exit(iStatus);
}
/
// Set up the APC for the LAM (Book the LAM)
/"
nLamType = 3,
nLamPriority = -1;
iStatus = cxlam(&hdl, // 'handle from caopen
&c_3296, // crate with our 3296
&n_3296, // slot containing 3296
&nLamType, // forever let us process it
&nLamPriority, // not used, but must be here
&ApcRoutine, /I APC to call
errstat); /I CAMAC status

if ((iStatus & 1) == 0)
{

printf("Failure to book the 3296 LAM\n");
camsg(errstat);
exit(iStatus);

}
"

// Enable the LS switch on the 3296 to generate a LAM

/7
c=1;

42

2915 Device Driver & API

Library for Windows 2000 CAMAC Application Programming Interface (API)
n=n_3296;
1=26;
a=0;
iStatus = cam16(&hdl, // handle from caopen
&c,
&n,
&a,
&f,
&srdata,
errstat);
while (TRUE)

iStatus = ResetEvent(hEvent);

if (iStatus == FALSE)
{
iStatus = GetLastError();
printf("Error Resetting Event: 0x%x\n", iStatus);
cwait();
exit(iStatus);
}
/
/l Waiting for a LAM
/
printf("Waiting for a LAM\n");
iStatus = WaitForSingleObject(hEvent, INFINITE);

if (WAIT_OBJECT _0 !=iStatus)

{
printf("Error in WaitForSingleObject: 0x%x\n", iStatus);
exit(iStatus);

}
printf("Object Received #%d\n",++Ipcnt);
} // end of main

/I APC procedure.
/"
// This routine is called when a LAM is received from the demand process
// as a result of the 3296 getting a LAM through its front panel switch.
/"
void ApcRoutine(int *dmd_id,
struct KSC_handle *handle,
int chassis,
void *user_arg)
{
/"
// Set the event so mainline will continue
/"
printf("APC triggered\n");
SetEvent(hEvent);

}

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

4.1.12 camlookupmsg

Syntax

void camlookupmsg (int *returnCode,
char *szSeverityBuffer,
int sizeSeverityBuffer,
char *szNameBuffer,
int sizeNameBuffer,
char *szDescBuffer,
int sizeDescBuffer);

Purpose
The camlookupmsg function is used to lookup descriptive strings associated with an error code.

Description

The camlookupmsg function takes an error code returned from other API functions and populates 3 user-
supplied buffers with strings that describe the severity of the return code, the name of the return code, and a
description of the return code. The user also specifies the size of each of the supplied buffers; this call will
truncate any message larger than the specified size.

This function is similar to function camsg, that passes the same information to standard output.

Parameters

retumCode npu Return Code from previous API call
szSeverityBuffer Input/Output User Buffer to hold the Severity Description
sizeSeverityBuffer Input Size of the Severity Buffer
szNameBuffer Input/Output User Buffer to hold the Name Description
sizeNameBuffer Input Size of the Name Buffer
szDescBuffer Input/Output User Buffer to hold the Return Code Description
sizeDescBuffer Input Size of the Return Code Description Buffer

For each of the three return strings (severity, name, and description), the caller supplies a buffer to be filled
in, and the size of the buffer. Return code strings that exceed the specified size of the buffer will be
truncated. It is valid to pass a NULL for any of the 3 buffers; any buffer specified as NULL will be
ignored, and no string will be returned for that category.

44

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

Return Values
None

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

main()
{
int status; // return status from the functions
char devname[] = "kpa00";
int *hdl; // Handle for operations
int errstatf STAMAX]; // array with list of errors
char severity[256];
char name[256];
char description[256];
/
// Open the device
/"
status = caopen(&hdl, devname, errstat);
/"
// Check if device opened properly
/
if ((status & 1) == 0)
{
camlookupmsg (&status,
severity,
sizeof(severity),
name,
sizeof(name),
description,
sizeof(description));

printf("CAOPEN failure:\n");
printf("\tName %s\n",name);
printf("\tSeverity %s\n",severity);
printf("\tDescription %s\n",description);
exit(status);

2915 Device Driver & API
Library for Windows 2000

CAMAC Application Programming Interface (API)

4.2 CAMAC List Building Routines

This chapter describes the routines provided that will allow the user to build CAMAC command lists
(CCL). The CAMAC command list provides an efficient mechanism to predetermine a sequence of
CAMAC operations to be performed and executed with a single function call. This functionality results in
an increase in performance since the application software does not have to make as many calls to the
CAMAC driver or the operating system.

The CAMAC command list generated by the application software must be unidirectional. This means that
all data transfers must be either transfer data to the CAMAC crate or from the CAMAC crate, but not both.
There is one exception to this rule, and that is the use of the Single Inline Write (cainaf) list instruction.
This instruction can be embedded in either a write list or a read list. The reason that this instruction is
allowed to be embedded in a list is that the associated write data for the command is contained in the list
itself, Therefore, a transfer of data from the write or read buffer is not required in order to obtain the write

data.

The 2915 requires that block transfers return multiples of thirty-two bit long words. Therefore, if a user

does a block transfer of five sixteen bit words, the list building routines will also store an instruction that
will return an additional sixteen zero bits to round the transfer up to a long word boundary. All data and
command list buffers must be long word aligned, even if their data type is a sixteen-bit integer.

The following table summarizes the available list building and support functions.

_ Function |

cainit

Initialization

This function is used to ‘nitialize a CAMAC command list prior to
adding the instruction to be performed once the list is executed.

cablk

Command

This function adds a CAMAC block transfer operation to the
CAMAC command list.

cainaf

Command

This function adds a single inline write CAMAC transfer operation
to the CAMAC command list. This command does not transfer data
from the data buffer, but embeds the write data in the list.

canaf

Command

This function adds a single CAMAC transfer operation to the
CAMAC command list. This command does transfer one 16 or 32-
bit data word from the specified buffer.

cahalt

Command

This function places the end-of-Iist marker in the CAMAC command
list. The CAMAC command list processor executes the elements
contained in a list until this special halt command is encountered.

caexew

Execute

This function executes a preloaded CAMAC command list and waits
until the requested operation is complete.

caexec

Execute

This function executes a preloaded CAMAC command list and does
not wait until the operation is complete. Instead, this function
requires the use of an event flag to communicate completion
information to the calling process.

46

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

4.2.1 cablk

Syntax

long int cablk(struct s_header *header,
short *c,
short *n,
short *a,
short *f,
short *mode,
int *datcnt,
int *datind,
int *error

Purpose

The cabik function adds a command to the CAMAC command list which when executes results in a
CAMAC block transfer operation.

Description

The cablk function performs a block transfer operation to or from a CAMAC module(s) utilizing either 16-
bit or 24-bit data words. A portion of the mode parameter for this function is used to indicate the CAMAC
data word size. For the 16-bit data transfers, only the lower 16-bits of the 24 bit CAMAC data word are
used during the transfer.

The cablk function supports all four types of block transfer operations. These four modes consist of Q-
Ignore, Q-Stop, Q-Repeat and Q-Scan. Please refer to the Transfer Mode section of this manual for details
on each operating mode. A portion of the mode parameter for this function is used to indicate the block
transfer-operating mode.

Parameters

__ Parameter Name ___ Descriptio _
Header array that is built by the cainit function and contains
header Input pointers to the CAMAC command list and data buffer. This is
updated as additional list elements are added.
c Input Address of the chassis to be accessed
n Input Slot number of the module to be accessed
a Input Subaddress within the module to be accessed
f Input Function code to be performed
mode Input Type of CAMAC block transfer to perform. Please refer to

47

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

__ Parameter Name | Direction - . ==
Transfer Mode section of this manual for additional
information. (See below)
datcnt Input Number of CAMAC operations to perform
This parameter is returned with the index in to the data buffer
datind Output marking the starting location for the block of data used for the
operation.
error Output Returned error code

The mode parameter in the cablk function is used to specify the CAMAC block transfer Q-mode, the
CAMAC data word size, and a specification as to the termination technique when a No-X condition occurs.
The following table shows the available selections as #defines in the kscuser.h include file. Note that only
one defined Q-mode or word size can be specified for each block transfer.

escription

QSTP Selects the Q-Stop Block Transfer Mode
QIGN Selects the Q-Ignore Block Transfer Mode
QRPT Selects the Q-Repeat Block Transfer Mode
QSCN Selects the Q-Scan Block Transfer Mode
Q-mode Block Transfer Selection
fdefine | " :

WTS16 Selects 16-bit CAMAC Data Word Size
WTS24 Selects 24-bit CAMAC Data Word Size

CAMAC Data Word Size Selection

#define | =~ = Description.
Inclusion of the AD in the mode description causes the
CAMAC command processor to ignore No-X conditions
during processing.

AD

CAMAC Data Word Size Selection

Return Values

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.

Invalid Mode specification

ERR702
An invalid CAMAC sub-address (A) was found. The CAMAC subaddress was either
ERR701 less than 0 or greater than 15. :
An invalid CAMAC block transfer type was found. The legal block transfer types are
QSTP, QIGN, QRPT, and QSCN with corresponding values of 0, 8, 16, and 24,
ERR703 .
respectively.
ERR712 The CAMAC command list is not large enough to hold all the commands.

48

2915 Device Driver & API
Library for Windows 2000

CAMAC Application Programming Interface (APD)

ERR715 Direction error, the CAMAC command list should be unidirectional.

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"
#include "kscuser.h”
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

main()
{ .
Int status;
char devname[] = "kpa00";
int *hdl;
int errstat;
short n;
short a;
short f;
short c;
short gmode;
int LongReadBuffer[8192];
unsigned long TransferCount;
int camac_list[8192];
int Datalndex;
int listmax;
int datamax;
int indicator;
int zero=0;
struct s_header header;
/!
// Open the device
I

status = caopen(&hdl, devname, errstat);

"

/1 Check if device opened properly

/"
if ((status & 1) == 0)
{

// return status from the functions

// Handle for operations
/I array with list of errors
/l slot

/! sub address

// function

/! crate

//" q mode for transfer

// short write data buffer
// transfer count for block
// list for camac processing
// data index

// max size of list

// max size of data

// zero value

printf("CAOPEN, error opening device = %s\n", devname);

camsg(errstat);
exit(status);

}
listmax = 1024;

datamax = 1024;

49

2915 Device Driver & API
Library for Windows 2000

qmode = QIGN | WTS24 ;

CAMAC Application Programming Interface (API)

status = cainit(&header, camac_list, &listmax, LongReadBuffer, &datamax,
&zero, &zero, &zero, &zero, errarr);

if ((status & 1) 1= 1)
{

printf("****ERROR**** cainit\n");
camsg(errstat);

Q) =

2

b

i

0;

a=0;

qmode = QIGN | WTS24 ;
TransferCount = 100;

status = cablk (&header, &c, &n, &a, &f, &qmode, & TransferCount, &Datalndex, errstat);

if ((status & 1) I=1)

{
printf("****ERROR**** cablk\n");
camsg(errstat);

status = cahalt(&header, errarr);
if ((status & 1) I=1)
{

printf("****ERROR**** cahalt\n");
camsg(errstat);

status = caexew(&header, &hdl, errarr);
if ((status & 1) I=1)
{

printf("****ERROR**** caexew\n");
camsg(errstat);
exit(status);
}
/
// Close the device
//
status = caclos (&hdl, errstat);
if ((status & 1) 1= 1)

{

printf{("****ERROR**** caclos\n");
camsg(errstat);

exit(status);

50

2915 Device Driver & API .
Library for Windows 2000 CAMAC Application Programming Interface (API)

4.2.2 caexec

Syntax

int caexec(struct s_header *header
void **hd],
int *error,
HANDLE event
);

2

Purpose

The caexec function loads and executes a CAMAC command list without waiting for the routine to
complete. An event flag must be used with this function in order to provide a notification mechanism to
the main application on completion.

Description

The caexec function executes a CAMAC command list built using the CAMAC list building routines.
Control is returned to the user process after the operation is queued to the driver. The user application must
then check the evenr flag to determine when the requested operation is complete.

The execution of a CAMAC command list is beneficial when an application program needs to perform
computations or other activity while the command list is executed.

Parameters
_ Parameter Name | Direction | = ,
Header array that is built by the cainit function and contains
header Input pointers to the CAMAC command list and data buffer. This is
updated as additional list elements are added.
hdlptr Input Handle returned by caopen function
error Output Error Code
event Input Event to be signaled when the operation is complete.

Return Values

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.

51

2915 Device Driver & API

Library for Windows 2000 CAMAC Application Programming Interface (API)

ERRI43 The CAMAC header is not initialized.

ERR144 The CAMAC header is initialized, but not correctly.

ERR601 An invalid channel number is specified.

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

HANDLE hEvent;
main()

// event for caexe (w/o wait)

int status; // return status from the functions

char devnamef] = "kpa00";
int *hdl;

int errstat{f STAMAX];
short n;

short a;

short f

short ¢;

short gmode;

int LongReadBuffer[8192];
unsigned long TransferCount;
int camac_list[8192];

int Datalndex;

int listmax;

int datamax;

int indicator;

int zero=0;

struct s_header header;

// Handle for operations
// array with list of errors
// slot

// sub address

// function

/! crate

/I q mode for transfer

// short write data buffer
// transfer count for block
// list for camac processing
// data index

// max size of list

// max size of data

/! zero value

z Open the device

! status = caopen(&hdl, devname, errstat);
/"

// Check if device opened properly

! i{f ((status & 1) == 0)

printf("CAOPEN, error opening device = %s\n", devname);
camsg(errstat);
exit(status);

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (AP))

}
hEvent = CreateEvent(NULL, TRUE, FALSE, NULL); // create event for done indication

status = ResetEvent(hEvent);

if (status == FALSE)
{
status = GetLastError();
printf("Error Resetting Event: 0x%x\n", status);

}
if (NULL == hEvent)

{

status = GetLastError();
printf("Error creating event object: 0x%x\n", status);

}

listmax = 1024;
datamax = 1024;

a=0;

gmode = QIGN | WTS24 ;

status = cainit(&header, camac_list, &listmax, LongReadBuffer, &datamax, errarr,
&zero, &zero, &zero, &zero, errarr);

if ((status & 1) I=1)

{

printf("****ERROR**** cainit\n");
camsg(errstat);

c=1;

qmode = QIGN | WTS24 ;

TransferCount = 100 ;

status = cablk (&header, &c, &n, &a, &f, &qmode, &TransferCount, &Datalndex, errarr);
if ((status & 1) 1= 1)

{

printf("****ERROR**** cablk\n");
camsg(errstat);

status = cahalt(&header, errarr);
if ((status & 1) 1= 1)

printf("****ERROR**** cahalt\n");
camsg(errstat);

status = caexec(&header, &hdl, errarr, hEvent);
if ((status & 1) 1= 1)
{

printf("****ERROR**** caexec\n");
camsg(errstat);
exit(status);

status = WaitForSingleObject(hEvent, INFINITE);

53

2915 Device Driver & API

Library for Windows 2000 CAMAC Application Programming Interface (API)
if (WAIT_OBJECT 0 != status)
{
printf("Error in WaitForSingleObject: 0x%x\n", status);
}
i
// Close the device
/"

status = caclos (&hdl, errstat);

if ((status & 1) 1=1)

{
printf("****ERROR**** caclos\n");
camsg(errstat);
exit(status);

54

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

4.2.3 caexew

Syntax
int caexew(struct s_header *header,
void **hdl,
int *error,
);
Purpose

The caexew function loads and executes a CAMAC command list and waits for the routine to complete. If
processing needs to continue while the CAMAC command list is being processed, use the caexec function
that incorporates use of event notification for completion indication.

Description

The caexew function executes a CAMAC command list built using the CAMAC list building routines.
~ Control is not returned to the user process until the operation is complete.

Parameters

__ Parameter Name ,
Header array that is built by the cainir function and contains
header Input pointers to the CAMAC command list and data buffer. This is
updated as additional list elements are added.
hdlptr Input Handle returned by caopen function
error Output Error Code

Return Values

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.

The CAMAC header is not initialized.

ERRI43
ERRI44 The CAMAC header is initialized, but not correctly.
ERR601 An invalid channel number is specified.

55

2915 Device Driver & API
Library for Windows 2000

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h”
#include "cmdlist.h"

main()
{ .
nt status;
char devname[] = "kpa00";
int *hdl;
int errstat{ STAMAX];
short n;
short a;
short f;
short c;
short gmode;
int LongReadBuffer[8192];
unsigned long TransferCount;
int camac_list[8192];
int Datalndex;
int listmax;
int datamax;
int indicator;
int zero=0;
struct s_header header;
/I
// Open the device
//

status = caopen(&hdl, devname, errstat);

1

// Check if device opened properly

/7
if ((status & 1) == 0)
{

CAMAC Application Programming Interface (API)

// return status from the functions

// Handle for operations
// array with list of errors
/1 slot

/! sub address

// function

// crate

//" q mode for transfer

// short write data buffer
// transfer count for block
// list for camac processing
// data index

// max size of list

// max size of data

// zero value

printf("CAOPEN, error opening device = %s\n", devname);

camsg(errstat);
exit(status);

}
listmax = 1024;

datamax = 1024;

a=(0;
gmode = QIGN | WTS24 ;

status = cainit(&header, camac_list, &listmax, LongReadBuffer, &datamax, errarr,

56

2915 Device Driver & API
Library for Windows 2000

CAMAC Application Programming Interface (API)

&zero, &zero, &zero, &zero, errarr);

if ((status & 1) 1= 1)
{

printf("****ERROR**** cainit\n");
camsg(errstat);

c=1;

n=l1;

=0;

a=0;

gmode = QIGN | WTS24 ;
TransferCount = 100 ;

status = cablk (&header, &c, &n, &a, &f, &qmode, &TransferCount, &Datalndex, errarr);

if ((status & 1) I=1)
{

printf("****ERROR**** cablk\n");
camsg(errstat);

status = cahalt(&header, errarr);
if ((status & 1) 1= 1)
{

printf("****ERROR**** cahalt\n");
camsg(errstat);

status = caexew(&header, &hdl, errarr)
if ((status & 1) I=1)

printf("****ERROR**** caexew\n");
camsg(errstat);
exit(status);

/

// Close the device

/"
status = caclos (&hdl, errstat);
if ((status & 1) I=1)
{

printf("****ERROR**** caclos\n");
camsg(errstat);
exit(status);
+
}

3

57

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

4.2.4 cahalt

Syntax
int cahalt(struct s_header *header,
int *error
);
Pu rbose

The cahalt function adds a command to the CAMAC command list that marks the end of the CAMAC list.
This function must always be called in order to provide a terminating entry in the list.

Description

The cahalt function adds a command to the CAMAC command list, This command is used to indicate the
termination of a CAMAC command list. The CAMAC command processor executes list instructions until
this halt is encountered.

Parameters

_Parameter Name | Direction | = _Descriptio .
Header array that is built by the cainif function and contains
header Input pointers to the CAMAC command list and data buffer. This is
updated as additional list elements are added.
error Output Error Code

Return Values

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.

ERRI43 The CAMAC header is not initialized.

ERRI144 The CAMAC header is initialized, but not correctly.
Example
#include <stdio.h>
#include <stdlib.h>

58

2915 Device Driver & API
Library for Windows 2000

#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

main()
{ .
mnt status;
char devname[] = "kpa00";
int *hdl;
int errstat{ STAMAX];
short n;
short a;
short £}
short c;
short gmode;
int LongReadBuffer[8192];
unsigned long TransferCount;
int camac_list[8192];
int Datalndex;
int listmax;
int datamax;
int indicator;
int zero=0);
struct s_header header;
!
// Open the device
/"

status = caopen(&hdl, devname, errstat);

i

// Check if device opened properly

/
if ((status & 1) == ()
{

CAMAC Application Programming Interface (API)

// return status from the functions

// Handle for operations
// array with list of errors
/I slot

/I sub address

/I function

/I crate

/I q mode for transfer

// short write data buffer
// transfer count for block
// list for camac processing
// data index

// max size of list

/! max size of data

/! zero value

printf("CAOPEN, error opening device = %s\n", devname);

camsg(errstat);
exit(status);

}
listmax = 1024;

datamax = 1024;

n=1;

f=16;

a=0;

gmode = QIGN | WTS24 ;

status = cainit(&header, camac_list, &listmax, LongReadBuffer, &datamax, errarr,

&zero, &zero, &zero, &zero, errarr);

if ((status & 1) 1= 1)
{

printf("****ERROR**** cainit\n");

59

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

/"
/!
/"

}

camsg(errstat);

c=1;

n=1;

f=0;

a=0);

gmode = QIGN | WTS24 ;

TransferCount = 100 ;

status = cablk (&header, &c, &n, &a, &f, &qmode, &TransferCount, &Datalndex, errarr);
if ((status & 1) I=1)

printf("****ERROR**** cablk\n");
camsg(errstat);

status = cahalt(&header, errarr);
if ((status & 1) I=1)
{

printf("****ERROR**** cahalt\n");
camsg(errstat);

status = caexew(&header, &hdl, errarr);
if ((status & 1) 1= 1)
{

printf("****ERROR**** caexew\n");
camsg(errstat);
exit(status);

}

Close the device

status = caclos (&hdl, errstat);
if ((status & 1) 1= 1)
{

printf("****ERROR**** caclos\n");
camsg(errstat);
exit(status);

}

60

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

4.2.5 cainaf

Syntax
int cainaf(struct s_header *header,
short *c,
short *n,
short *a,
short *f)
short *mode,
int *data,
int *error
);
Purpose

The cainaf function adds a command to the CAMAC command list which when executed results in single
CAMAC wrrite operation. The data for this operation is included in the CAMAC command list and not
extracted from the data buffer.

Description

The cainaf function adds a single inline write operation to the CAMAC command list. The write data for
the cainaf instruction is contained in the CAMAC command list. Therefore, this instruction does not
require data transfer from the data buffer for the list. This instruction is beneficial for setting up CAMAC
module parameters that do not vary from list execution to list execution. Since this command does not
transfer any data from the list data buffer, one can embed this instruction in either a write CAMAC
command list or a read CAMAC command list.

Parameters
_ Parameter Name

_Direction Description

Header array that is built by the cainir function and contains
header Input pointers to the CAMAC command list and data buffer. This is
updated as additional list elements are added.
c Input Address of the chassis to be accessed
n Input Slot number of the module to be accessed
a Input Subaddress within the module to be accessed
f Input Function code to be performed
Type of CAMAC operation to perform. Please refer to
mode Input Transfer Mode section of this manual for additional
information. (See below)
data Input 32-bit word reserved for specification of the CAMAC write
data embedded in the list.
error Output Error Code

61

2915 Device Driver & API

Library for Windows 2000

CAMAC Application Programming Interface (API)

The mode parameter in the cainaf function is used to specify the CAMAC transfer Q-mode, the CAMAC
data word size, and the termination technique used when a No-X condition occurs. Even though the cainaf
only executes a single write operation, the CAMAC Q and X returns are evaluated and continued list
processing is based on their values as it relates to the selected Q-mode. The following table shows the
available selections as #defines in the kscuser.h include file. Note that only one defined Q-mode or word

size can be specified for each transfer.

_ _#Hdefine | __ Description
QSTP Selects the Q-Stop Block Transfer Mode
QIGN Selects the Q-Ignore Block Transfer Mode
QRPT Selects the Q-Repeat Block Transfer Mode
QSCN Selects the Q-Scan Block Transfer Mode

Q-mode Transfer Selection

e
WTS16

" Selects 16-bit CAMAC Data Word Size

WTS24 Selects 24-bit CAMAC Data Word Size

CAMAC Data Word Size Selection

. #define | _Description

Inclusion of the AD in the mode descriptio

during processing.

n causes the
CAMAC command processor to ignore No-X conditions

CAMAC Data Word Size Selection

Return Values

The most common error codes are listed here. For a comprehensive list, please refer to

the Error Codes section of this manual.

ERR143 The CAMAC header is not initialized.

ERRI144 The CAMAC header is initialized, but not correctly.
Example
#include <stdio.h>
#include <stdlib.h>

#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

62

2915 Device Driver & API

Library for Windows 2000 CAMAC Application Programming Interface (API)
main()
int status; // return status from the functions
char devname[] = "kpa00";
int *hdl; // Handle for operations
int errstat{STAMAX]; // array with list of errors
short n; /I slot
short a; /! sub address
short f; /I function
short ¢; // crate
short gmode; /I q mode for transfer
int lwdata; // write data
int camac_list[8192]; // list for camac processing
int Datalndex; // data index
int listmax; // max size of list
int datamax; // max size of data
int indicator;
mt zero=0; // zero value
struct §_header header;
/"
// Open the device
/"
status = caopen(&hdl, devname, errstat);
/"
// Check if device opened properly
/

if ((status & 1) ==0)
{

printf("CAOPEN, error opening device = %s\n", devname);
camsg(errstat);
exit(status);

)
listmax = 1024;
datamax = 1024;

status = cainit(&header, camac_list, &listmax, LongReadBuffer, &datamax, errarr,
&zero, &zero, &zero, &zero, errarr);
if ((status & 1) !=1)
{

printf("****ERROR**** cainit\n");
camsg(errstat);

c=1;

n=1;

f=16;

a=(0;

gmode = QIGN | WTS24 ;

Iwdata = 0x112233;

status = cainaf (&header, &c, &n, &a, &f, &qmode, &lwdata, errarr);
if ((status & 1) I=1)

{

printf("****ERROR**** cainafin");
camsg(errstat);

63

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

}

status = cahalt(&header, errarr);
if ((status & 1) 1= 1)
{

printf("****ERROR **** cahalt\n");
camsg(errstat);

status = caexew(&header, &hdl, errarr);
if ((status & 1) 1= 1)
{

printf("****ERROR**** caexew\n");
camsg(errstat);
exit(status);
}
/"
/{ Close the device
/"
status = caclos (&hdl, errstat);
if ((status & 1) I=1)
{

printf("****ERROR**** caclos\n");
camsg(errstat);
exit(status);

}
}

4.2.6 cainit

Syntax

int cainit(struct s_header *header,
void *control_list,

int *control_list_size,
short *data buffer,

int *data_buffer size,
int *status_buffer,

int *WC_buffer,

int *WC_buffer size,
int *QXE_bulffer,

int *QXE_buffer_size,
int *error);

Purpose

The cainit function initializes the CAMAC list building header. This function must be called prior to
building a CAMAC command list.

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

Description

The cainit function is used to initialize the header and other data structures for the CAMAC command lists.
This function should be called whenever a new CAMAC command list is built. The header holds the sizes,
lengths, and pointers to other data structures used during processing time. The header is a parameter for all
subsequent calls to the list building functions.

The cainit function requires array parameters that should be declared sufficiently large enough to contain
all the list processing elements and data buffers. The data buffer used for the CAMAC command list must
be large enough to “hold” all the data for a CAMAC list operation. All data transferred throughout the list
operation is moved through this buffer. When generating a list of operations, a tally must be made to
ensure that the total number of data words transferred for each individual list element is accounted for when
determining the total data buffer size.

Pargmeters

_ Parameter Name : escriptio
The header information contains pointer to other data
header Input structures, lengths of structures, and other vital information
regarding the operation of the CAMAC command processor.

This array is used to hold the CAMAC command list. The
control_list Input control list should be declared as a longword array with a size

of control list size.

This parameter specifies the number of elements available in

the CAMAC command list.

This array holds all the data for the associated data transfers
contained in the CAMAC command list. The shortword array
data buffer Input/Output | should be declared with a size of data_buffer-size. The address
of this array must be longword aligned and is initialized when

the cainit function is used.

This parameter specifies the size of the data_buffer. The
data_buffer size Input buffer must be declared by the user sufficiently large so that
the array can hold all requests from the CAMAC command list.

This parameter is not used but here for legacy support. It may

control_list_size Input

status_buffer Input be set to a pointer to a value of zero.
WC buffer Input This parameter is not used' but here for legacy support. It may

- be set to a pointer to a value of zero.
WC buffer size Input This parameter is not used‘ but here for legacy support. It may

- - be set to a pointer to a value of zero.
QXE_buffer Input This parameter is not used‘ but here for legacy support. It may

— be set to a pointer to a value of zero.
QXE_buffer size Input This parameter is not used. but here for legacy support. It may

— be set to a pointer to a value of zero.

error Output _Error Code

Return Values

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.

ERRIO3 Th header size does not match the header size of the current version.

65

2915 Device Driver & AP|
Library for Windows 2000

ERRI41
ERRI42

CAMAC Application Programming Interface (APID)

Data buffer not longword aligned.

Control list buffer not longword aligned.

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

main()
int status; // return status from the functions
char devname[] = "kpa00";
int *hdl; // Handle for operations
int errstat{f STAMAX); // array with list of errors
short n; /1 slot
short a; // sub address
short f; // function
short c; /I crate
short qmode; /I q mode for transfer

int LongReadBuffer[8192];
unsigned long TransferCount;
int camac_list[8192];

int Datalndex;

int listmax;

int datamax;

int indicator;

int zero=0;

struct s_header header;

/
// Open the device
/
status = caopen(&hdl, devname, errstat);
/"
// Check if device opened properly
/

if ((status & 1) == 0)
{

// short write data buffer

// transfer count for block
/1 list for camac processing
// data index

// max size of list

// max size of data

/! zero value

printf("CAOPEN, error opening device = %s\n", devname);

camsg(errstat);
exit(status);

}
listmax = 1024;

66

2915 Device Driver & API
Library for Windows 2000

datamax = 1024;

gmode = QIGN | WTS24 ;

CAMAC Application Programming Interface (API)

status = cainit(&header, camac_list, &listmax, LongReadBuffer, &datamax, errarr,
&zero, &zero, &zero, &zero, errarr);

if ((status & 1) 1= 1)
{

printf("****ERROR**** cainit\n");

camsg(errstat);

a=0;

qmode = QIGN | WTS24 ;

TransferCount = 100 ;

status = cablk (&header, &c, &n, &a, &f, &qmode, &TransferCount, &Datalndex, errarr);

if ((status & 1) 1= 1)
{

printf("****ERROR**** cablk\n");

camsg(errstat);

status = cahalt(&header, errarm);

if ((status & 1) 1= 1)
{

printf("****ERROR**** cahalt\n");

camsg(errstat);

status = caexew(&header, &hdl, errarr);

if ((status & 1) 1= 1)
{

printf("****ERROR**** caexew\n")

camsg(errstat);
exit(status);
}
//
// Close the device
//

status = caclos (&hdl, errstat);

if ((status & 1) I=1)
{

printf("****ERROR**** caclos\n");

camsg(errstat);
exit(status);

67

2915 Device Driver & AP}
Library for Windows 2000 CAMAC Application Programming Interface (AP))

4.2.7 canaf

Syntax
int canaf(struct s_header *header,
short *c,
short *n,
short *a,
short *f,
short *mode,
int *DatInd,
int *error
);
Purpose

The canaf function adds a command to the CAMAC command list which when executed results in a single
CAMAC transfer.

Description

The canaf function is used to add a single CAMAC transfer operation to the CAMAC command list. This
function will only execute a single transfer. For block transfer operations, the cablk list instruction should
be used.

This command will allocate one element in the CAMAC command list. If the CAMAC operation is a read
or write operation, then space in the data buffer will also be allocated for the command entry. The
parameter Datind will be returned with a value corresponding to the index into the data buffer where the
commands’ data is located. Note that the data buffer used to transfer data for these single operations is
specified in the cainit function.

The canaf function supports all four types of transfer operations. These four modes consist of Q-Ignore, Q-
Stop, Q-Repeat and Q-Scan. Please refer to the T} ransfer Mode section of this manual for details on each
operating mode. A portion of the mode parameter for this function is used to indicate the block transfer-
operating mode.

Parameters
FPafamét‘er“Name~~ _| Direction | = = = .
Header array that is built by the cainit function and contains
header Input pointers to the CAMAC command list and data buffer. This is
updated as additional list elements are added.
C Input Address of the chassis to be accessed
N Input Slot number of the module to be accessed
A Input Subaddress within the module to be accessed

68

2915 Device Driver & API

Library for Windows 2000

_ Parameter Name

CAMAC Application Programming Interface (API)

Function

F Input
Type of CAMAC block transfer to perform. Please refer to
mode Input Transfer Mode section of this manual for additional
information. (See below)

This parameter is returned with the index in to the data buffer

DatInd Output marking the starting location for the word of data used for the
operation.
error Output Error Code

The mode parameter in the canaf function is used to specify the CAMAC transfer Q-mode, the CAMAC
data word size, and the termination technique used when a No-X condition occurs. Even though the canaf
only executes a single write operation, the CAMAC Q and X returns are evaluated and continued list
processing is based on their values as it relates to the selected Q-mode. The following table shows the
available selections as #defines in the kscuser.h include file. Note that only one defined Q-mode or word
size can be specified for each transfer.

= _Description
Selects the Q-Stop Block Transfer Mod

Selects the Q-Ignore Block Transfer Mode

Selects the Q-Repeat Block Transfer Mode

Selects the Q-Scan Block Transfer Mode

_#define |
WTS16

Q-mode Transfer Selection

escription .
Selects 16-bit CAMAC Data Word Size

WTS24

Selects 24-bit CAMAC Data Word Size

CAMAC Data Word Size Selection

Inclusion of the AD in the mode description causes the
CAMAC command processor to ignore No-X conditions
during processing.

CAMAC Data Word Size Selection

Return Values

ERRI43
ERRI44

ERR202

The most common error codes are listed here. For a comprehensive list, please refer to
the Error Codes section of this manual.

The CAMAC header is not initialized.
The CAMAC header is initialized, but not correctly.

A CAMAC in-line read operation was specified. Only CAMAC write and control
functions can be specified as in-line operations.

69

2915 Device Driver & API
Library for Windows 2000 CAMAC Application Programming Interface (API)

Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "ksc_api.h"
#include "kscuser.h"
#include "camerr.h"
#include "strfunc.h"
#include "cmdlist.h"

main()
{
int- status; // return status from the functions
char devname[] = "kpa00";
int *hdl; // Handle for operations
int errstat{ STAMAX]; // array with list of errors
short n; /! slot
short a; // sub address
short f; /I function
short ¢; /! crate
short qmode; //" q mode for transfer
int LongReadBuffer[8192]; // short write data buffer
int camac_list[8192]; //ist for camac processing
int Datalndex; // data index
int listmax; // max size of list
int datamax; // max size of data
int indicator;
int zero=0; // zero value
struct s_header header;
/
// Open the device
//
status = caopen(&hdl, devname, errstat);
/"
// Check if device opened properly
/
if ((status & 1) == 0)
{
printf("CAOPEN, error opening device = %s\n", devname);
camsg(errstat);
exit(status);
}

listmax = 1024;
datamax = 1024;

status = cainit(&header, camac_list, &listmax, LongReadBuffer, &datamax, errarr,
&zero, &zero, &zero, &zero, errarr);
if ((status & 1) 1= 1)
{

printf("****ERROR**** cainit\n");

70

2915 Device Driver & API
Library for Windows 2000

camsg(errstat);

a=0;

gmode = QIGN | WTS24 ;

TransferCount = 100 ;

CAMAC Application Programming Interface (API)

status = canaf (&header, &c, &n, &a, &f, &qmode, &Datalndex, errarr);

if ((status & 1) 1= 1)

printf("****ERROR**** canaf\n");

camsg(errstat);

status = cahalt(&header, errarr);

if ((status & 1) !=1)

printf("****ERROR**** cahalt\n");

camsg(errstat);

status = caexew(&header, &hdl, errarr);

if ((status & 1) 1= 1)
{

printf("****ERROR**** caexew\n");

camsg(errstat);
exit(status);
}
//
// Close the device
1/

status = caclos (&hdl, errstat);

if ((status & 1) 1= 1)
{

printf("****ERROR**** caclos\n");

camsg(errstat);
exit(status);
}
}

71

2915 Device Driver & API
Library for Windows 2000 Demands

5 Demands

5.1 The Demand Process

The Demand Process acts as a server to application processes for handling demands from the KSC2915
device driver. Application processes send registration requests to the Demand Process for all demands
received from the CAMAC system they wish to service. Demands are enabled by the Demand Process for
each CAMAC crate if demands are not currently enabled on the crate. When the device driver receives
demands from the CAMAC highway, the Demand Process immediately dispatches the demand to the
registered process. Demands that are received for which there are no processes registered are ignored by
the Demand Process (only a statistic is kept).

5.2 Demand Configuration File

On startup, the Demand Process creates a temporary group global section called “DMDREGION”. It then
populates this region with demand entries read from a configuration file pointed located in the same
directory as the Demand Process (DMDPROC.EXE). If the Demand Process receives an error that the
region already exists, it knows that another Demand Process is currently servicing demands. The Demand
Process exits under these conditions.

The maintenance of this file is through a normal text editor. The information contained in the configuration
file is:

text comment

The syntax of the demand configuration file is:

crate, id, type, qlength, desc

Where:
crate Decimal Crate number on the K-bus Paralle]l Bus.
Id Demand Id generated by the Crate. See the 2915 and 3922 CAMAC
controllers for description.
type CAMAC (2)
glength Queue length
desc User description displayed by dmdsts utility.

72

2915 Device Driver & API
Library for Windows 2000 Demands

The following is an example configuration file. Any line beginning with an exclamation mark is ignored.

! Sample configuration file. This file is input to the demand process.

! Exclamation points at the beginning of a line denote comment lines.

! Commas are used to separate the columns of information. The columns are
! defined below. Commas used in the description field will simply

! truncate the description at the position of the comma. The use of spaces

! before and after columns will be considered valid nput.

!Crate Queue

' DemandId Type Length Description
1, 1, 2, 11, Crate 1 / Demand 1
1, 2, 2, 12, Crate 1 / Demand 2
1, 3, 2, 13, Crate 1 / Demand 3
1, 4, 2, 14, Crate 1 / Demand 4
2, 4, 2, 15, Crate 2 / Demand 4
2, 5, 2, 16, Crate 2 / Demand 5
2 6 2 17, Crate 2 / Demand 6

b

'
-

5.3 Application Registration for Demands

The Demand Process establishes a single system-wide named pipe “\.\pipe\dmdproc”. The Demand
Process reads registration requests from user processes (see KSC_enable_demand). The user receives the
status of the Demand notification via a unique pipe created by the user process for the particular demand.
The demand must be defined within the demand configuration file prior to the startup of the demand
process. Adding new demands requires the restart of the Demand Process and the stopping of all processes
currently registered for demands.

5.4 Demand Processing

The 2915 driver returns demands to the Demand Process in a 9-element long word array. The first element
of the array contains the contents of the 2915 Service Request Register. Bits 0 through 7 represent crates
through 7 with the respective bit set to 1 if a LAM is enabled in any of the crates. The 2™ through 9%
elements contain the LAM status register for each crate (a maximum of 8 crates).

The Demand Process looks at each of the crate LAM status registers which is a 24-bit register that indicates
the present state of all LAM requests in the CAMAC crate. Each bit corresponds to the appropriate Station
in the crate. The Demand Process will attempt to clear the module LAM by first reading the crate LAM
Status Register with a F(1) A(12). If the read is successful an attempt is made to clear the LAMs using
F(23) A(12) using the LAM status as the clear pattern. If this didn’t work then F(11) A(12) is tried to clear
all LAMs within the module. If this doesn’t work then LAM are cleared using F(10) A(0). Finally F(10)
A(i) where i corresponds to the bit positions set in the LAM Status Register is tried.

For each LAM asserted the crate number is used to traverse the demand entries associated with it. This
should reduce the search time for the matching Demand ID. Any demands that are received and are not in
the table will increment the unknown-demand counter. If the Application process that should receive the -
demand is no longer present, or if its pipe is closed, the demand event will be logged and the not registered
counter incremented. Otherwise, the Demand Process sends the following information to the registered
application:

73

2915 Device Driver & API
Library for Windows 2000 Demands

Function = DEMAND MSG
Crate Number of Demand
Demand ID in Crate

User Index

Time of Demand

If this demand was a one-shot, the demand entry is cleared. When there are no longer any application
processes registered for a crate, the Demand Process will disable demand recognition for that crate.

It is possible that the process may be still active but the image that requested the demand registration may
have been run down. The Demand Process will consider a pipe write error to be the same as a process no
longer being available,

Each time a demand is processed, the Demand Process also increments statistic counters and stores the time
stamp of the event in the group global region. (The utility DMDSTS can display this information.) If at
any time the Demand Process gets a failure writing to a pipe it will disable the demand.

The number of demand messages, the frequency at which they arrive, and activity caused by other
processes on the highway at the time will influence the speed at which a demand is delivered to an
application process. For CAMAC crates, the Demand Process must attempt to clear the LAM. This
attempt to clear competes with all other requests to the device driver and will effect the response of the
demand delivery to the registered process.

5.5 User Application Program

There may be more than one Application program that receives demands, but a single Demand ID in a crate
can be registered to only one Application.

All Application programs must contain the following elements (see program
\KPAOOl\EXAMPLES\TEST_DMD.C):

e Call KSC_init to create the structure KSC_handle required by all other KSC and CAM
modules.

e CallKSC_enable_demand for each demand to be received. The application maps the demand
region to ensure the Demand Process is running, and another process is not currently
capturing the demand. This module creates a pipe then sends a registration request to the
Demand Process using the Demand Process’s registration pipe. The registration reply is
received in the APC routine, which it also sets up. Demands received are dispatched to a
user-written APC routine that should appropriately process each demand received. Finally,
this module reposts another read on the pipe for the subsequent demand.

The developer must create a read APC routine to examine each demand received and take
appropriate action.

The following diagram shows an overview of the Demand Process, showing a process registering for
LAMS (Demands) using the CAMAC library.

5.6 Demand Process Dataflow

The Win2K (NT) version of the Demand Process utilizes named pipes for its method of communication
between application programs and itself. A named pipe is a one-way or two-way pipe for communicating
between a server process and one or more client processes. Named pipes allow for multiple instances of a
single pipe, however, an instance of the pipe may only be opened by one client at a time, Due to the fact

74

2915 Device Driver & API
Library for Windows 2000 Demands

that an instance of a pipe may only be opened once, multiple threads are often used to create multiple
instances of the pipe to communicate with multiple clients. The following drawing is an overview of
demand request flow.

Demands
.
Application 1 ;’ fm
— i T
d b " Demand Process ™.
Request}. . el . [Demand.CFG
) <\Thr1& ad)) / \E!Q“\ s :| TN TN - T
o i\=\<Request <Reques§
A ! \Thr2ead Thr:;aad‘) Located in same directory
- \EL\‘\—// \-//_\ as Demand Process
,," ™S Demand / Request
/ Thread | .~ Thread
NN T N

A {Request
Thread

5 -

L

[Application 2

RN Request /Request .
5\ Thread Thread
L

~3

Request S
. Thread ;. S

The demand process creates 1 named pipe with the name
\\PIPE\DMDPROC. The multiple pipes shown in the
drawing are mulitiple instances of the pipe W\PIPE\PMDPROC.

The arced lines above each represent an instance of the named pipe \\PIPE\DMDPROC. These are two -
way pipes. The application program will send to the Demand Process a request for a particular demand,
and will receive from the Demand Process demand information. For every demand requested by an
application program a thread and pipe instance will be created by both the application program and
Demand Process. There will be one thread and pipe instance per demand request. In addition the Demand
Process creates one additional thread (Thread 1 in the drawing above) to read demands from the KSC2915.
Thread 1 will be able to write to Pipes 1, 2, 3, 4 since all it needs is the pipe handle which it will be able to
obtain from the shared memory region. The Demand Process is a Windows program with one window to
display the error and status messages

75

2915 Device Driver & API
Library for Windows 2000 Demands

5.7 Demand Utilities

5.7.1 Program DMDSTS

The DMDSTS program is a diagnostic that reads the Demand Process’s demand global section. It allows a
user to display the demand registration, pipes, and demand statistics. DMDSTS has read-only access to the
Demand Process’s global section.

The program presents information in one of two mutually exclusive modes;

e Continuous mode - Displays and updates every 5 seconds information on currently active
demands. Output is only to the CRT screen in 132-column mode.

¢ Dump mode - Displays various amounts of information to the CRT screen or (optionally) to a

file. The amount of information displayed depends on which command line switch is used.

Continuous Mode

Usage: DMDSTS /CONT Switch explicitly specified
DMDSTS Invokes/CONT, by default
Dump Mode

Usage: DMDSTS /CRATE=x Region header plus crate “x”, enabled or not.
DMDSTS /ENABLED Region header plus all enabled demands.
DMDSTS /CONFIG Region header plus all configured demands,
DMDSTS /ALL Region header plus all demands, even those not
enabled or configured.
DMDSTS /OUT=file Output goes to "file", not screen. Not valid
with /CONT switch.

The first four switches are mutually exclusive, and, if more than one is present on the command line, the
one with highest precedence is used.

Switch Precedence:

/ALL Highest, overrides all below
/CONFIG Overrides all below

/ENABLED Overrides all below

/CRATE=x Lowest, overrides no other switches

For each switch, the information displayed is:

Switch Region Crate Table Demand Entry
Header
/ALL X All, configured or not All that are config
/CONFIG X Only those configured All for config
/ENABLED X Only those enabled All for enabled
/CRATE=x X Only crate “x”, even if not config or not enabled All for the crate

The /OUT switch can be used with any of the above four switches to direct output to the indicated “file”
instead of to the screen/window. The /OUT switch will be ignored if used the /CONT switch.

76

2915 Device Driver & API
Library for Windows 2000 APPENDIX A - CAMAC ERROR CODES

6 APPENDIX A - CAMAC ERROR CODES

The driver and language interface routines perform various checks on both the parameters passed by the
calling program and the operation of the hardware. When an error is detected, these routines return an error
code to the calling program. This appendix contains a list of error numbers and an explanation of the error.
Some error codes listed are from legacy device drivers, but are included here for completeness.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112

113.

114.

115.

116.

117.

118.

The version number of the driver does not match the version number found in the Header. Check to
make sure all software is at the same version number,

The length of the Data Buffer is greater than the specified size of the Data Buffer.

The Header size does not match the Header size of the current version.

The length of the CAMAC Control List is greater than the specified size of the CAMAC Control List.
The Status Buffer size does not match the Status Buffer size of the current version.

The process does not have either read or write access to the Data Buffer. Check that the Data Buffer has
been properly declared.

The System does not have enough contiguous Real Time Page Table Entries to double map the Data
Buffer. The number of Real Time Page Table Entries can be changed by modifying the Sysgen
parameter REALTIME SPTS.

The process does not have a big enough Working Set to lock down the Data Buffer. The Working Set
size can be changed by modifying the Authorize parameter WSquo.

Unknown VMS error while trying to lock the CAMAC Control List into memory.

Unknown VMS error while trying to lock the Data Buffer into memory.

Unknown VMS error while trying to lock the Status Buffer into memory.

The CAMAC Control List does not have enough space at the end for the CAMAC driver to insert a
number of halt instructions. The length of the CAMAC Control List must be four long words less than
the size of the CAMAC Control List so four Halt instructions can be added.

The Data Buffer has a length of zero but must have a length of at least one. A dummy word must be
entered into the Data Buffer (Header(DatLen)=1) .

The driver does not have read access to the Header. Check that the Header has been properly declared.

The size of the Header is over 64K words. Check that the size of the Header has been declared as a
longword.

The process does not have either read or write access to the CAMAC Control List. Check that the
CAMAC Control List has been properly declared. .

The System does not have enough contiguous Real Time Page Table Entries to double map the CAMAC
Control List. The number of Real Time Page Table Entries can be changed by modifying the Sysgen
parameter REALTIME SPTS.

The process does not have a big enough Working Set to lock down the CAMAC Control List. The

77

2915 Device Driver & API
Library for Windows 2000 APPENDIX A - CAMAC ERROR CODES

119.
120.
121.

122,
123.

124,

125.

126.
127.

128.
129.

130.

131.

132.
133.

134,

135.

136.

Working Set size can be changed by modifying the Authorize parameter WSquo.

The length of the CAMAC Control List is over 64K words. Check that the variable specifying the length
of the CAMAC Control List has been declared as a long word.

The CAMAC Control List does not fit in one segment. The CAMAC Control List plus the CAMAC
Control List offset cannot fit within one segment,

The size of the CAMAC Control List is over 64K words, Check that the variable specifying the size of
the CAMAC Control List has been declared as a longword.

The length of the CAMAC Control List is over 32K-1 words. The largest CAMAC Control List allowed
is 32K-1 words.

The CAMAC Control List has a size of zero but must have a size of at least one,

The process does not have either read or write access to the QXE Buffer. Check the address and the size
of the QXE Buffer in the Header.

The System does not have enough contiguous Real Time Page Table Entries to double map the QXE
Buffer. The number of Real Time Page Table Entries can be changed by modifying the Sysgen
parameter REALTIME SPTS.

The process does not have a big enough Working Set to lock down the QXE Buffer. The Working Set
size can be changed by modifying the Authorize parameter WSquo.

The QXE Buffer does not fit in one segment. The QXE Buffer plus the QXE Buffer Offset cannot fit
within one segment.

The size of the QXE Buffer is over 64K words. Check that the variable specifying the size of the QXE
Buffer has been declared as a long word.

The size of the QXE Buffer is over 32K-1 words. The largest QXE Buffer allowed is 32K-1 words.

The process does not have either read or write access to the Status Buffer. Check that the Status Buffer
has been properly declared.

The System does not have enough contiguous Real Time Page Table Entries to double map the Status
Buffer' The number of Real Time Page Table Entries can he changed by modifying the Sysgen parameter
REALTIME-SPTS.

The process does not have a big enough Working Set to lock down the Status Buffer. The Working Set
size can be changed by modifying the Authorize parameter WSquo.

The size of the Status Buffer is over 64K words. Check that the variable specifying the size of the Status
Buffer has been declared a long word.

The process does not have either read or write access to the Word Count Buffer. Check the address and
the of the Word Count Buffer in the Header.

The System does not have enough contiguous Real Time Page Table Entries to double map the Word
Count Buffer. The number of Real Time Page Table Entries can be changed by modifying the Sysgen
parameter REALTIME_SPTS.

The process does not have a big enough Working Set to lock down the Word Count Buffer. The
Working Set size can be changed by modifying the Authorize parameter WSquo.

78

2915 Device Driver & API

Library for Windows 2000 APPENDIX A - CAMAC ERROR CODES

137 The WC Buffer does not fit in one segment. The WC Buffer plus the WC Buffer Offset cannot fit within

) one segment.
The size of the WC Buffer is over 64K words. Check that the variable specifying the size of the WC
138.
Buffer has been declared as a long word.

139, The size of the WC Buffer is over 32K-1 words. The largest WC Buffer allowed is 32K-1 words.

140. Unknown VMS error while trying to lock the Word Count Buffer into memory.

141. Unknown VMS error while trying to lock the (M Buffer into memory).

201. An illegal command was found in the CAMAC Control List.

202 An In-Line CAMAC read was specified. Only CAMAC write and control functions can be specified in

“' an In-Line CAMAC Control List command.

203. An illegal LAM type was specified, the command types are zero through seven.

204 A block transfer CAMAC control function was specified. Only CAMAC read and write functions can be
) specified for block transfer CAMAC Control List commands,

205. The remainder of the Data Buffer is too small to hold the data for the CAMAC block transfer.

206. An illegal CAMAC word size for the CAMAC device was encountered.

207 Block transfer timeout. The CAMAC software driver has timeout because the CAMAC hardware has
) not responded.

208 Block transfer timeout. The CAMAC software driver has timeout because the CAMAC hardware has
’ not responded.

209. Bad interrupt mode.

210. The QIO request was in some way canceled.

211. Out of data error. The Data Buffer was not big enough to hold or accept the data for the single naf.

212. Error in purging the data-path.

213 Single transfer timeout. The CAMAC software driver has timeout because the CAMAC hardware has
’ not responded.

214 Single transfer timeout. The CAMAC software driver has timeout because the CAMAC hardware has
) not responded.

215. Error in allocating a data-path.

216. Error in allocating mapping registers.

217. Error in purging the data-path.

218. Error in purging the data-path.

219. No PHYIO privileges, PHYIO privileges are needed for the operation.

79

2915 Device Driver & API

Library for Windows 2000 APPENDIX A - CAMAC ERROR CODES
220. Error in purging the data-path.
221. Power failure error.
222. The CAMAC Control List could not hold the enter LAM command.
223, The CAMAC driver could not allocate enough system memory to book the LAM request.
224, Illegal CAMAC crate. The CAMAC crate is probably off-line.
301. Invalid crate number during a CAMAC block transfer operation. The specified crate is not online.
302. An N greater than 23 error has occurred during a CAMAC block transfer operation.
1303 A CAMAC NO-Q error has occurred during a CAMAC block transfer operation,
304. CAMAC no-sync error during a CAMAC block transfer operation.
305. A CAMAC NO-X error has occurred during a CAMAC block transfer operation.
306. A CAMAC non-existent memory error has occurred during a block transfer operation.
307. A CAMAC STE-error has occurred during a CAMAC block transfer operation.
308. A CAMAC timeout error has occurred during a CAMAC block transfer operation.
309. An undefined CAMAC error has occurred during a CAMAC block transfer operation.
310. Invalid crate number during a CAMAC single transfer operation. The specified crate in not online.
311 An N greater than 23 error has occurred during a CAMAC NAF operation.
312. A CAMAC NO-Q error has occurred during a CAMAC NAF operation.
313. A CAMAC STE - error during a CAMAC single transfer operation.
314. A CAMAC NO-X error has occurred during a CAMAC NAF operation.
315. A CAMAC non-existent memory error has occurred during a single transfer operation.
316. A CAMAC STE-error has occurred during a CAMAC single transfer operation.
317. A CAMAC timeout error has occurred during a CAMAC NAF operation.
318. An undefined CAMAC error has occurred during a CAMAC NAF operation.
401, Access violatioq, either the I/Q status block cannot be written by the caller, or the parameters for device-
dependent function codes are incorrectly specified.
402. The specified device is offline and not currently available for use.
403, Insufficient system dynamic memory is available to complete the service. There are probably no free
IRPS, use SHOW MEMORY to see the number of free IRPS.
404. An invalid channel number was specified.

80

2915 Device Driver & API!
Library for Windows 2000 APPENDIX A - CAMAC ERROR CODES

405.

406.

501.

502.

503.

504.

505.

506.

507.

508.
601.
602.

603.

701.

702.

703.

704.

705.

706.

707,
708.

709.

The specified channel does not exist, was assigned from a more privileged access mode, or the process
does not have the necessary privileges to perform the specified functions on the device.

The QIO error is unknown to the CAMAC software.

Access violation, the device string cannot be read by the caller, or the channel number cannot be written
by the caller. .

The CAMAC device is allocated to another process.

Illegal device name. No device name was specified, the logical name translation failed, or the device
string contains invalid characters.

The device name string has a length of 0 or has more than 63 characters.
No I/O channel is available for assignment,

The specified CAMAC device does not exist. Check the device string for misspellings or a missing
colon and check that the device driver has been loaded.

The process tried to assign a CAMAC device on a remote node. CAMAC operations cannot be
performed over a network.

The CAOPEN error is unknown to the CAMAC software.

An invalid channel number was specified.

The specified channel is not assigned or was assigned from a more privileged mode.
The CACLOS error is unknown to the CAMAC software.

An invalid CAMAC subaddress (A) was found. The CAMAC subaddress was either less than 0 or
greater than 15 (4 < O or 4 > 15).

Invalid mode byte. The mode byte for the Advanced Fortran routines is invalid (advanced Fortran
routines).

An invalid CAMAC block transfer type was found. The legal block transfer types are QSTP, QIGN,
QRPT, and QSCN with corresponding values of 0, 8, 16, and 24, respectively.

An invalid CAMAC function code (F) was found. The CAMAC Function code was either less than 0 or
greater than 31 (F < Q or F > 31).

An invalid CAMAC crate controller function was found. The valid CAMAC crate controller functions
are INIT, CLEAR, SETINH, CLRINH, and ONLINE with corresponding values of 0, 1, 2, 3, and 4,
respectively.

An invalid CAMAC slot number (N) was found. The slot number was either less than 1 or greater than
30 (N <1 or N> 30).

Invalid LAM type.
Invalid priority.

A CAMAC block transfer control operation was specified which is invalid. Only CAMAC Read or

81

2915 Device Driver & API
Library for Windows 2000 APPENDIX A - CAMAC ERROR CODES

710.

711.

712.
713.

714.

Write block transfers are allowed. The function code (F) for the block transfer was either between 8 and
15 inclusive or between 24 and 31 inclusive (8 <F < 15.0r 24 < F <31).

An in-line CAMAC read was specified. Only in-line CAMAC control and write operations are legal (F8
through F31).

The Data Buffer is not big enough to hold all the data for the CAMAC Control List.
The CAMAC Control List is not big enough to hold all the commands.

A CAMAC block transfer with a block size of zero was found. A CAMAC block transfer must have a
size of at least one word.

Illegal CAMAC crate number.

82

