KineticSystems Corporation
Model 2927
CAMAC/IBM PC Interface
and
6110-1L Windows 95 Software

Release 1.2

1997

The information furnished by KineticSystems Corporation in this publication is
believed to be accurate and reliable. However, no responsibility is assumed by
KineticSystems Corporation for its use nor for any infringements of patents or other
rights of third parties resulting from its use. No license is granted under any patents
or patent rights of KineticSystems Corporation.

The software described in this document is furnished under license and may be
-used or copied only in accordance with the terms of such license.

First Edition - September, 1997

IBM is a frademark of International Business Machines. Compaq and Deskpro are
trademarks of Compaq Corporation. MS-DOS, MS-FORTRAN, and MS-Pascal are
trademarks of Microsoft, Inc. BASIC is a trademark of Dartmouth College.

KineticSystems Corporation
900 North State Street
Lockport, IL 60441, USA

Telephone (815)838-0005

©Copyright 1997 by KineticSystems Corporation
All Rights Reserved

6110-1LGz2,1.2
1997

Contents

CAMAC Introductionoiinin ittt e ettt et et e 1
Introductionc.iiiniiiiir it e e 1
CAMAGC Crate . ..ottt ittt et e e e et e e et e e 2

CAMAC Datawayottt ititeii ettt e e e ieeinnnn. 3
Crate Controllerciuiniii ittt e e 4
CAMAC Modulescoiniiiiii ittt et et e et 5
CAMAC Addressingooiiiiiiiiiiitietieeieneennnnannnns 9
Crate Address ©oi ittt ettt et et 9
Module Address (IN) . ..ottt ettt et et e e e e 10
Function Codes (F) ittt ittt et e e 10
CAMAC Status Returns Qand X iiiinn... 12
QStatusReturn e 13
XStatus Return i e 13
Cratewide Controls Z, C,and I 0. 13

Software Installationttt 14
Introduction it e 14
Software Distributiont e 14
Installingthe Driverttt 15
Uninstallingthe Driverttt 17

Library Routinesottt et e e 18
Library Introductiont 18
Library Call Summaryottt ittt ieienennnns 18
Parameter Definition File CAUSERottt 20
Initialization Callst 20

CAOPEN .. 20
CACLOS .. e 21
Single-Action Data TransferCalls 23
CAMIG . e e e e e 23
CAM 24 .. e e e .. 24
Block Transfer Calls e e e 26
CABI6 ... e 26
CABZ4 .. . e 28
Controland Status Calls0 ittt e, 31
CACTRL i e e e e 32
CCS T AT ... e e e e e e e e 33
CAMSG . .. e e e 34

Advanced Routinescoiiiinireinnnnneeeeceoncnncnoceaacoaanns 37
Operating System Considerationscoeveeenennnneennnnn. 37
Advanced FortranInterfacecciiviiiiiiiniiiiniinennnn. 37
CAMAC Control List Functionalitycciiiieeeernnanennnnn.. 38
CCLDataStructuresccveieeiennnn. etteiaie i, 38

I = LY 1o 13 A 40
DataBufferciiiiiiiiii ittt eiieeeeennccaoacnoasannans 40
CAMAC Control Listcviiiiitiieneneenneansaaanannnanns 40
QXE Bufferoii it i it ittt tie ittt 40
WordCount Bufferciiiiiiiiiiiii ittt eennnaneaanes 41
Return Status Bufferiiiiiiiiiiiiiiiiiniereeececenannns 41
Advanced Routine Summaryc.ointiienennnneraceoacannns 41
Initialization Routines f et ete e eeaeaes 43

CAOPEN ... i i i i ettt e 43
(oF: L 70 1 TP 44
CaAlNIT .. i i ettt e 45
List Building Routinesiiiiiiiiriiteneeeeeeeneeaannns 49
CAN AR L i i i et ettt e 50
CAIN AR ... i it i i i it it ettt ettt r e e, 51
CaBLK ...t e et e 53
CAH AL T .. i ettt it e st eeetaaananaaaaaaa 55
Transfer Modeso iv it ittt ittt ettt etenaanaaeesenanenenans 56
List Execution Routinesciiiiiirriiienerieennarennaeanns 59
CAEXEW i i i i ettt et 59

Advanced List BuildingExample i 60

List Analysis Routinescuiimimiinnennnnennnennnennnennannns 63
(7- 41 15 2 O 63
CAMSG Formatciiiiiiiiittiitiieeeeenaseenaonenennanns 63
Status Buffercoitiiiiiii i i ettt e 64
Word Count Bufferoiiiiiiii ittt ittt iteeneennnnnan 66
QXE Bufferoiii ittt i i it et e, ... 67

=N 0] 0 =Y o (o 1 5: 4 -\ 68

APPEendix B ... et e 79
CAUSER Fortran Parameter Definitionsc.covtinennnenn. 79
Function Subroutine Declarations A 4
Advanced Function Subroutine Declarations 80
Crate Controller Functions (func)cciuiiiiiiiinnnnnnnnnnn 80
Block Transfer Model (mode)cciiiiiimiiiiiiiniinnnnnn. 81
Enhanced Block Transfer Mode (mode)oouooeeneernenenennnn. 81
Word Size and Abort Modeciiiiiiiii i i i i e 81

StatusArray Offsetsciiiitmiiiiiiii ittt e eaenennann 82

Status Buffer Offsetso it e e ettt 82

Crate Controller Status Array Offsets 82
CAMAC Control List Constantsc.coiiiiiiiiennennnnn. 83

Word Count Record Offsetscoviii it iiiieennnnn. 83

QXE Record Offsetscoiiiiii ittt et e 84
Header Offsetso ittt ittt ettt e eeeennnnn 84
Appendix C ... e e et e 86
Command List Protocol i ienannnnn 86
Introduction to the Command List Protocol 86

Command List Formatcitiiiriimmiinnnnnnns 87

CLP Operation Code OPR i 88

Warranty

List of Figures

Figure 1.1:
Figure 1.2:
Figure 1.3:
Figure 1.4:

Figure 4.1:

CAMAC Crate

Dataway Timing ...

CAMAC Crate Controller ittt iinnnnn.

Typical CAMACI/OModulescoiiiiiiininnean..

QIO Data Structures

......................................

List of Tables

Table 1.1:
Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4:
Table 4.1:
Table 4.2:
Table 4.3:
Table 4.4:

Table 4.5:

CAMAC Function Codescoiuiiniiiiiinnnnan.. 11
Transfer Modes i i, 29
CAMAC Crate Controller Functions 33
Crate Controller Status Arrayccciiieeeinnnnnennn. 34
Return Status Arraycciiiiimiitinin i, 36
QIO Data Structuresccvviiiiii ittt 39
CAMAC Command List Element Lengths 49
Advanced Block TransferModes oot 57
Advanced Word Size Modescoiiiiiiiiity 57

CAMAC Operation Abort Condition 58

Chapter 1

CAMAC Introduction

This Chapter provides a brief overview of CAMAC.

Introduction

CAMAC is an international modular instrumentation and digital
interface standard. This standard was originally developed by the
European Standards on Nuclear Electronics (ESONE) Committee in
1969; it was further refined in collaboration with the National
Instrumentation Methods (NIM) Committee in the U.S. The American
National Standards Institute and the Institute of Electrical and
Electronic Engineers have adopted the basic CAMAC standard as
ANSI/IEEE Std. 583-1982.

CAMAC has gained acceptance as a computer-independent, modular,
standard instrumentation interface for a wide variety of industrial,
research, and aerospace/defense applications. CAMAC’s strengths
include high modularity and flexibility, wide selection of modules for
interfacing to external instrumentation, computer independence, rugged
construction, and multiple vendor support.

CAMAC Crate

The basic CAMAC building blocks are the module and the powered
CAMAC crate, or card cage for the modules (see Figure 1.1, page 2). The
CAMAC standard specifies the physical and electrical characteristics
required for both the crate and associated modules. A full-sized CAMAC
crate mounts in a standard 19-inch ranch and provides 25 module slots.
Smaller crates with 9 and 12 slots are also available. A parallel bus, the
CAMAC Dataway, runs across the back of the crate and serves as the
communications path between modules and the crate controller. The
crate controller occupies slots 24 and 25 at the right end of a full-size
crate.

Figure 1.1: CAMAC Crate

oot s;;sssssss“\\s&.;
o B G B B, T, Qe . e e R R B, s i R R S R

1§

r-_
o Swesresssny W

CAMAC Dataway

The Dataway is a 24-bit-wide data bus with a one microsecond minimum
cycle (see Figure 1.2, page 3). It is geographically addressed by slot
numbers 1-24 and supports an interrupt-like capability called Look-At-
Me, or LAM. All slots on the Dataway are equivalent except for slot 25
which is called the controller station. Each slot on the Dataway is
powered and is provided with voltage sources of + 24v, +6v, and
optionally +12v. The KineticSystems Corporation (KSC) 1502 Powered
Crate, for example, can supply up to 52A at +6v and up to 12A at +24v.

Figure 1.2: Dataway Timing

]
|
Command <-—1 r—-—’
| |
Data <-—‘ _.._.__l,_.
Status
Strobe 51 Yo — F
| WSS |
| |
Strobe Sp = ’ : i — >
II | I |
400ns 1 200msi 100 1 200nsi 100
Pl e PE e PC e DA - P

Dataway Operation

Notes: 1) All Dataway signals are low-true.

2) Strobe Sj is used to gate information into
modules from the Write lines. Information
from Read lines and status bits are gated
into the crate controller at this time,

3) Strobe Sp is used to perform other functions
within & module such as incrementing data
addresses and Clearing LAM status bits.
Therefore, data, status or LAM status may
change at $2.

Crate Controller

Dataway operations are controlled by the crate controller (see Figure 1.3,
page 4). The main crate controller must occupy slots 24 and 25. All
other slots on the Dataway are equivalent and act as slaves. Dataway
transactions are always initiated by and under the control of the crate

controller.
Figure 1.3: CAMAC Crate Controller

CAMAC Modules

The CAMAC module is the basic unit which provides the input/output
function to the physical world (see Figure 1.4, page 5). Modules plug
into the crate and interface to the crate Dataway. The CAMAC standard
specifies the physical size of modules, power levels, the Dataway signals
and handshake protocol. The functions performed by the module and
the interface to the external world are at the discretion of the module
designer. A wide selection of CAMAC modules is commercially available.
Some of the I/O modules offered by KineticSystems Corporation are
listed in Table 1.1. (see page 6).

Figure 1.4: Typical CAMAC I/O Modules

Table 1.1 : Typical KineticSystems Corporation Modules

Model

3075, 3076
3063, 3072
3072
3074
3040
3080

Model

3421
3470
3471
3472
3473

Model

3110
3112
3120
3162

Digital Output

16-,24-bit relay contact output
16-,48-bit TTL level output

48-bit open collector output

24-bit optically isolated output
8-channel timed-output AC switches
8-channel AC switch output

Digital Input

16-bit input register with buffer
24-bit input register with strobe
24-bit isolated input gate

48-bit TTL level input gate
24-bit change-of-state register

Analog Output

8-channel, 10-bit D/A
8-channel, 12-bit D/A
4-20 mA output driver
power supply controller

Model Analog Input

3512, 3514 16-channel scanning A/D
3525 16-channel temperature monitor
3553 12-bit A/D with programmable gain
3554 4-channel isolated A/D
3562 2 or 4-channel synchro/digital converter
3570 4-channel RTD sensor input
3581 isolated A/D with multiplexer
35630,31,32,82 multiplexors (relay and solid state)
-3540 signal conditioner for 3512, 3514
Model Transient Recorders
4010 2-channel transient recorder
(12-bit, 1 MHz, 16 Ksample memory)
4020/4050 2-channel transient recorder
(12-bit, 1 MHz, memory to 4 Msample)
4022/4050 8 to 64-channel transient recorder
(12-bit, 250 KHz, memory to 4 Msample)
4024/4050 32 to 64-channel datalogger

(12-bit, 5 KHz, memory to 4 Msample)

Model Counters
3655 timing pulse generator

3610,3615 6-channel high-speed counter (50/100 MHz)
3620 24-channel low-speed counter (200 Hz)
3640 4-channel up-down counter

Model Miscellaneous

3271 computer speech synthesizer

3792 watchdog timer and power monitor

3705 process I/O (A/D, D/A, and discrete)
K Model Output Controllers

3340 RS-232 communications interface

3360 pulse train generator

3362 stepping motor controller

3388 GPIB (IEEE-488) interface

CAMAC Addressing

The basic CAMAC addressing consists of the Crate number (C), the
module slot number (N), the subaddress within the module (A), and the
Function code (F). The crate number (C) and module slot number (N)
determine the geographic address of the module to be accessed. The
subaddress (A) and function (F) are module-specific, and the actions
caused by various A and F codes are at the discretion of the module
designer within the broad requirements set by the standard. Data sheets
for specific modules indicate what subaddresses and function codes are
implemented.

Crate Address (C)

Many CAMAC interfaces support multiple crates. With these interfaces
the crate number forms part of the address. The crate address (C) for
2922 and 2926 is a number from 0 to 7 which is set on the thumbwheel
switch on the 3922 crate controller. The crate address for serial systems
is numbered from 1 to 62 which is set on thumbwheel switches on the L2
crate controller. Each crate controller on a multiple crate
interface/driver must be set to a different address.

Module Address (N)

The module address (N) is the slot number of the module to be
addressed. Slot numbers range from 1 to 24 (left to right) for a full-sized
crate. Smaller crates start with N(1) on the left and have
correspondingly fewer slots. The main crate controller occupies slots 24
and 25 in full size crate.

Additionally, the 3922 and the 3952 crate controllers respond to pseudo-
address N(30) commands. These N(30) commands access internal crate
controller registers and are only recognized when addressed to the crate
controller via the interconnect to the host computer (K-Bus or Serial
Highway), and are not real addresses in the crate.

Module Subaddress (A)

Sixteen subaddresses are reserved by the CAMAC protocol to address
registers within a module. Subaddresses are number 0 through 15. The
meaning of the subaddresses is left to the module designer. Subaddress
A(0) is generally used as a primary register address for reading and
writing data within a module.

Function Codes (F)

The function codes range from 0 through 31 and are divided into three
general classes by the CAMAC standard: Read operations are F(0)-F(7),
Write operations are F(16)-F(23), and Control operations are F(8)-F(15)
and F(24)-F(31). Each of the function codes is further subdivided as
shown in Table 1.3.

10

Table 1.1: CAMAC Function Codes
F | Function F Function
0 Read Group 1 reg 16 | Write Group 1 reg
1 Read Group 2 reg 17 | Write Group 2 reg
2 Read & Clear Group 1 18 | Selective Set Group 1
3 Read Complement 19 | Selective Set Group 2
Group 1
4 Nonstandard 20 | Nonstandard
5 Reserved 21 fe]ective Clear Group
6 Nonstandard 22 | Nonstandard
7 Reserved 23 gelective Clear Group
8 Test Look-At-Me 24 Disable
9 Clear Group 1 reg 25 | Execute
10 | Clear Look-At-Me 26 | Enable
11 | Clear Group 2 reg 27 | Test Status
12 | Nonstandard 28 | Nonstandard
13 | Reserved 29 | Reserved
14 | Nonstandard 30 Nonstandard
15 | Reserved 31 [Reserved

11

CAMAC Status Returns Q and X

Q and X are status responses generated by an addressed module to a
CAMAC command. These responses can be used to indicate whether a
module is capable of executing a command and if it was able to
successfully complete that command.

Q Status Return

Q is a single-bit status response from an addressed module. It may or
may not be generated depending upon the module. In general, a Q=1
(true) response is generated for valid Read or Write commands when the
module has successfully transferred the data. Typically, when data is not
available (Read operations) or the module can’t accept new data (Write
operations), a Q=0 will be generated. Examples of a Q=0 response are
a Read operation to an ADC while it is converting or a Write operation
to a stepping motor controller while it is still stepping the motor from
a previous step count.

The Q response is frequently used with block transfers such as Q-Stop,
Q-Repeat, and Q-Scan. In the Q-Stop mode, repeated commands (NAF's)
are issued to the same module until it responds with Q=0. This type of
command is useful for reading or writing a memory module.

In the Q-Repeat mode, Q=0 results in the command being repeated for
Write operations until a Q=1 is received. For Read operations, data is
transferred from the module only when Q=1 indicates that data is valid.
Q-Repeat is useful for reading an ADC as soon as the ADC has converted
or for writing to & module which requires some time to perform its
output function.

In the Q-Scan mode, the crate controller starts the scan at the specified
module address N and increments subaddress A until it reaches A(15) or
receives a Q=0; it then resets to A(0) and increments N (i.e., goes to the
next module). Thls process is repeated until either the de31red number
of data items are transferred or N is incremented beyond 23. Note that
this mode skips over empty slots. This type of command is useful to read
data from a group of modules.

12

X Status Return

The X status return is used to indicate whether the command is valid for
the addressed module. The CAMAC standard does not require that a
module implement all possible functions (F) or subaddresses (A).
Whenever a module is addressed with a valid command, it is required to
provide an X=1 response. Note that this is different from the Q
response in that is possible to have a valid command (X=1) but get a
Q=0 response with a Read command to an ADC while it is converting.

Cratewide Controls Z, C, And I

Three cratewide controls are provided: Initialize (Z), Clear (C), and
Inhibit ().

The Initialize (Z) control line is monitored by all modules. When the
initialize signal is generated, all data and control registers are set to a
defined initial state, all LAM status registers are reset, and LAM
requests are reset, if possible. The initialize control is used during start-
up to set the system to a known state. Crate controllers generate an
initialize signal at crate power-up; also the host computer can request
that an initialize cycle be performed by setting a bit within the
control/status register of the crate controller.

The Clear (C) control line is used to clear registers within the modules.
The module designer is free to choose which registers are to be cleared
in response to the clear control line. Frequently, modules such as scalers
will use this signal to reset their counters to zero. Crate controllers
include a control/status register bit which can be set to generate a clear
cycle on the Dataway.

The Inhibit () control line is used to inhibit activities in a module. The
module designer is free to choose which activities are to be inhibited by
this signal. The inhibit signal is frequently used to activate data
acquisition on a cratewide basis. This signal can be generated by a
control/status register bit in the crate controller or by other modules in
the crate. For example the KSC 3655 Timing Module can synchronously
gate the inputs on and off for a group of data acquisition modules.

13

Chapter 2

Software Installation

This chapter discusses the installation of the CAMAC software, including the CAMAC driver
and tools.

Introduction

This chapter and the following ones describe the KineticSystems Corporation 6110-1L Sofiware
Support Package. This package includes a software driver for the 2927 running under Windows
95, as well as software to use the 2927 with high-level languages.

Software Distribution
The CAMAC driver, camac.vxd, forms the basis for all CAMAC I/O.

The library camac.dll. is used with high-level language compilers. The Include File camapi.h
defines many useful parameters in the C environment.

14

Installing the Driver

The driver is installed using InstallShield. You invoke the installation by running Setup
from the distribution floppy.

o
e
S

R
SR
S

e

After the Welcome screen appears, click Next.

You will now have the option to change the destination location for the driver. The
default is C:\Program Files\KineticSystemsCorporation.

Choose Destination L ocation

3/\

S
S

5

S

S

: e
3 e
S

o
S

,%,

7 G
S
L

S

SRR
s =
Sesenren
S

ST s e
o

o

S

=

RO

2 S
ARSREREES 3 SR

The default location can be changed by clicking the Browse button.
Once the correct location has been selected, click Next.

The files will now be copied and one or more informational screens will appear regarding
the Base Address and DMA Channel. Click OK to end the installation program.

Once the driver is installed, it will be necessary to verify the Base Address and DMA
Channel settings against the actual settings of your 2927 interface card. The software
settings can be modified using the KSTools program, which is found under

Start... Programs.. Kinetic Systems Corporation...KSTools.

Click on the Tool Chest to the left of the KS Tools title and choose Driver Registry. This
will bring up a dialog box allowing you to set the Base Address and DMA channel that
the driver will use. IMPORTANT: These values MUST match the hardware settings on
your 2927 interface card.

ey
=

S
Y

Once the settings match, you can begin doing CAMAC transfers using the KSTools
Program.

16

The following files have been installed in the destination folder that was selected during
Setup (default location is C:\Program Files\KineticSystemsCorporation).

Camac.lib Animport library used with high-level language compilers.
Camapi.h A C language include file.

Kstools.exe The KSTOOLS Program.

Uninst.isu A file used during an uninstall of the software.

The following files have been installed in the Windows System folder (usually
C:\Windows\System)

Camac.vxd The CAMAC virtual device driver
Camac.dll . The Dynamic Link Library used with High-level compilers

The Kinetic Systems Corporation program group was created under Start... Programs.

Uninstalling the Driver

Should it become necessary to uninstall the driver and tools, this may be accomplished
from Add/Remove Programs in the Windows 95 Control Panel.

17

Chapter 3

Library Routines

This chapter covers the C language routines for CAMAC.

Library Introduction

The routines in this chapter are simple to understand and use. In
general, the specified CAMAC 1/O operation will be executed before
control is retumed to the user process, and each call comresponds to a
basic CAMAC 1/0 operation. Users who need to optimize CAMAC
throughput should refer to the chapter on Advanced Library Routines.

Library Call Summary

The standard routines provide you with a simple, direct set of calls to
perform 1/O operations to CAMAC. The calis are divided into four
groups:

18

inlficlization Calls

CAOPEN (&chan,device,StatusArray)
CACLOS (&chan,StatusAmrray)

Single-Action Data Transfer Calls

CAM16 (&chan,&C,&N,&A &F,data,StatusArray)
CAM24 (&chan,&C,&N,&A &F data,StatusArray)

Block Transfer Calls

CAB16 (&chan,&C,&N,&A &F &mode,DataAray,
&TransCount, StatusArray)
CAB24 (&chan,&C,&N,&A,&F,&mode,DataArray,
&TransCount, StatusArray)
Status and Control Calls
CACITRL {&chan,&C,&func,StatusAray)

CCSTAT (&chan,&C,CrateStat,StatusAmray)
CAMSG (StatusAray)

The CAMAC interface routines are called either as a procedure:
camroutine (arguments ...),
or as a function subroutine:
.ERROR = camroutine (arguments ...),
where camroutine is one of the CAMAC routines defined in this manual.
In the case of the Function subroutine, the function returns the emror

status. The error status is always “"1" if the operation was successful. The
Function subroutine simplifies the checking of the success or failure of

19

a CAMAC 1/O operation, since the call and the test are made in the
same line as follows:

IF { camroutine(args ...)==1)
/® success ®/

ELSE
/® fail */

Parameter Definition File CAUSER

To simplify your task, the include file Include File CAUSER.INC is
provided. This file defines various parameters which are used with the
interface. When this file is added to your program through the Include
CAUSER.INC statement, it is possible to symbolically reference
parameters. For example, the Q-Stop block transfer mode can be
represented as “QSTP" rather than needing to remember that Mode
0" is the Q-Stop mode. This file also declares all eniry poinis as
Integer*4 (See Appendix B).

Initialization Calls

The initialization calls provide a mechanism to open the CAMAC
device for I/O by the program. Subroutine CAOPEN should be called
once for each CAMAC interface (2927) to be accessed by the
program and should not be called again until the channel has been
closed.

CAOPEN

Subroutine CAOPEN assigns a channel to a device so that CAMAC
operations can be performed. This subroutine must be called once at
the start of the program before attempting any CAMAC operations.
Once the channel has been opened, CAOPEN should not be called
again unless the channel is deassigned by a call to CACLOS.

20

Note that CAOPEN Inifializes the *“chan" parameter. All
other CAMAC routines use this value to direct I/O to the
appropriate device. Be sure that the value of the
“*chan" argument is the one Initialized by CAOPEN.

This subroutine takes the following form:

CAOQOPEN (&chan,device,StatusArray)

Parameter

chan

device

StatusArray

CACLOS

Description

HDRVR'(defined in windows.h)
The handle assigned to the CAMAC interface.

char*

The name of the device to be accessed. The
logical device name must be the same as the
name in the system.ini file.

(ex. CAM=cadriver.drv device name is CAM))

long int aray([10}{ at least one element in length
)

The StatusAmray variable is returned with a value
indicating the success or failure of the Open (see
Appendix A). CAOPEN only references the first
element of the StatusArray argument. A returned
value of "*1" indicates success.

Subroutine CACLOS deassigns a channel from a device so that, when
the CAMAC operations on the device are complete, the channel can
be assigned to another device via the CAOPEN call. This subroutine
takes the following form:

21

CACLOS (&chan,StatusAmray)}

Parameter Description
chan HDRVR { defined in windows.h)

The handle assigned to the CAMAC interface.

StatusAmray long int aray[10]{ at least one element in length
)
The StatusAmray variable is returned with a valve
indicating the success or failure of the channel
Close (see Appendix A). CACLOS only references
the first element of the StatusAmray argument. A
return vaiue of "' 1" indicates success.

Example: Open channel ““chan” on device ""2927:" so
that I/O can be directed to the channel followed by a
Close when finished.

#include<windows.h>
#include"causer.h"

main()

{
HDRVR chan;
char statusarr[10];
char *device="CAM";

caopen|&chan, device, statusarr);
if(statusarr[0] I= 1)

/* error */

camsg(statusarr); .
else

/* success */

22

caclos(&chan, statusarr);
if(statusarr[0] 1= 1)

/* error®/

camsg|(statusarr);
else

/* success */

V Single-Action Data Transfer Calls

The single-action data transfer calls are simple to use. Each call results
in a single CAMAC operation and the appropriate data transfer.Two
versions of the single-action routines are provided,CAM16 for 16-bit
transfers and CAM24 for full 24-bit transfers. These routines are
appropriate for applications where single 1/O operations are required
or for short blocks of data where the overhead of program-transfer
operations can be tolerated. For large blocks of data, the DMA block
transfer routines are recommended; they take full advantage of the
hardware DMA features and only incur the setup overhead once for
the entire operation.

CAM16

Subroutine CAM16 performs a single 16-bit CAMAC data transfer. This
subroutine reads or writes 16 bits of data to read from or write o a
CAMAC module. For this I/O operation, the lower 16 bits of the 24-bit
CAMAC word are transferred between the CAMAC module and the
data variable in the PC. This subroutine takes the form:

CAM16 (&.chan,&C,&N, & A, &F, &data,StatusArray)

Parameter Descrigfioh
chan HDRVR (defined in windows.h) .

The handle assigned to the CAMAC mferfoce
The parameter “*chan” is initialized by

28

data

StatusArray

CAM24

Subroutine CAOPEN,

short int{supplied}
The number of the CAMAC crate to be selected.

short int{supplied}
The Station number of the module to be selected.

short int{supplied}
The Subaddress to be selected within the CAMA
module. :

short int{supplied}

The CAMAC Function Code to be performed. If F is
in the range of 0 and 7, a CAMAC Read operation is
selected. If F is 16 to 23, a Write operation is
selected. If F is 8 to 15 or 24 to 31, a CAMAC
Control operation is selected and the data parameter
is ignored.

short int{supplied or returned}

The data to be read or written by the CAMAC
operation. For a CAMAC Read operation, data is
returned. For a CAMAC Write operation, the data
supplied from the PC memory is written to the
module. For a CAMAC Control operation, this
argument is not needed but must be present in the
argument list for compatibility.

long int array[10]}{returned}
StatusArray contains information from the I/O
operation performed. It is a ten-word long int array.

Subroutine CAM24 performs a 24-bit camac operation. This subroutine

24

reads or writes 24 bits of data to read from or write to a CAMAC
module. This call is similar to CAM16 except that CAM24 performs a
24-bit transfer instead of a 16 bit fransfer as in CAM16. The arguments for
CAM24 are the same as the arguments for CAM14, except the data
variable is long Int instead of short int. Refer to the CAM16 subroutine
description for the argument list. For CAM24, the full 24-bit CAMAC
word is stored in the lower bits of the 32-bit integer data variable. This
subroutine takes the form:

CAM24 (&chan,&C,&N,& A &F &data,StatusArray)

Example:Open a channel to CAMAC and write a 14-bit
pattern to a 3291 Dataway Display module in Slot 5,
Crate 1.

#include<windows.h>
#inciude"causer.h”

main()

{
HDRVR chan;
short int c=0,n=1,0=0,f=16;
long int - data=63;
char statusarr[10];
char *device="CAM";

caopen(&chan, device, statusarr);
if(statusarr[0] 1= 1)
{

/* error */

camsg(statusarr);

return -1;

}

/* successful caopen */

cam24(&chan,&c,&n,&aq,&f,&data,statusarr); -
if(statusarr[0] 1= 1) ;
{

25

}

/* successful caopen */

cam24(&chan,&c,&n &a &f &data,statusarr);
if(statusarr[0] = 1)

{
/* error */
camsg(statusarr);
return -1;

}

caclos(&chan, statusarr);
if(statusarr[0] = 1)

{
/* error ¥/
camsg(statusarr);
return -1;
}
return 1;
}
Block Transfer Calls

The CAMAC Block transfer calls move blocks of data to or from
CAMAC modules in a single operation using the DMA features of the
2927 interface. Use these routines for reading or writing blocks of
data between PC memory and transient digitizers, FIFO modules,
display modules, etc.; for repeated operations to a single module; and
for reading or writing a group of modules in a CAMAC crate. Even for
a modest-size data block, these routines have less overhead than the
equivalent number of single-action calls because they transfer the
data block at a DMA rate and incur the software setup overhead only
once for the entire operation. For additional information on CAMAC
Block transfers, refer to Chapter 1, CAMAC Introduction.

CABI16

Subroutine CAB16 performs Block transfers of 16-bit data words to
and from CAMAC. Four types of Block transfers are possible:
Q-Stop,Q-Repeat, Q-Scan, and Q-Ignore. The type of transfer is
specified by the mode argument. Additional information on the
transfer modes is provided in Table 3.1. The FORTRAN Include File
CAUSER.INC defines these arguments. For this I/O operation, only

26

the lower 16 bits of each 24-bit CAMAC word are transferred between
the CAMAC module(s) and the data array in the PC. This subroutine

takes the form:

CAB16 &chan,&C AN &A &F 8mode,DataArray,
&TransCount,Status Array)

Parameter

chan

mode

Description

HDRVR (defined in windows.h)

The handle assigned to the CAMAC interface.
The parameter ° “chan”is initialized by
Subroutine CAOPEN.

short int{supplied}
The number of the CAMAC crate to be selected.

short int{supplied}
The Station number of the module to be selected.

short int{supplied}
The Subaddress to be selected within the CAMAC
module.

short int{supplied}

The CAMAC Function Code to be performed. If F is in
the range of 0 and 7, a CAMAC Read operation is
selected. If Fis 16 to 23, a Write operation is selected. If
Fis 8 to 15 or 24 to 31, a CAMAC Control operation is
selected and the data parameter is ignored.

short int{supplied}
The type of CAMAC Block transfer to be performed.
The transfer modes are described in Table 3.1. The

modes are found in Inclide File causer.h.

27

DataArray short int{supplied or returned}
DataArray is an array containing the data to be read or
written by the CAMAC Block transfer operation. Fora
block CAMAC Read operation, DataArray is returned.
For a block CAMAC Write operation, the data in

DataArray is written to CAMAC.

TransCount long int{supplied}
The number of CAMAC transfers to be performed by
the Block operation.

StatusArray long mt array[10}{returned}

StatusArray contains information from the I/O operation
performed. It is a ten-word long int array (see Table
3.4).

CAB24

Subroutine CAB24 performs block transfers of 24-bit data words to and from
CAMAC. When using this subroutine, the 24-bit CAMAC word is transferred
into the lower 24 bits of a 32-bit word. The upper byte is set to " “zero” for
CAMAC Read operations. Four types of block transfers are possible: Q-Stop,
Q-Repeat, Q-Scan, and Q-Ignore. The type of transfer is specified by the mode
argument. Additional information on the modes is provided in Table 3.1. The
arguments for CAB24 are the same as the arguments for CAB16 with the
exception of DataArray, which is Integer®4 instead of Integer*2. Also the transfer
count variable contains the number of Integer*4 words to be read or written.
Refer to the CAB16 subroutine description for additional details regarding the
argument list. This subroutine takes the following form:

CAB24 (&chan & C.&N &A &F &mode,DataArray,
& TransCount,StatusArray

28

Table 3.1: Transfer Modes

QsTP

QIGN

QRPT

QSCN

Performs a Q-Stop CAMAC block transfer operation
(mode=0). This mode continues to transfer the block
of data until the data array is exhausted or a NO-Q
is received (see Chapter 1).

Performs a Q-ignore CAMAC block transfer
operation (mode=8). This mode transfers the block
of data until the data array is exhausted. The Q
response is ignored.

Performs a Q-Repeat CAMAC block transfer
operation (mode=16). This mode transfers the block
of data until the data array is exhausted. Whenever
a Q=0 response is received during the block, the
Dataway operation is repeated and the data array
address pointer is not incremented (see Chapter 1).

Performs a Q-Scan CAMAC block transfer operation
(mode=24). This mode transfers a block of data until
the data array is exhausted or N > 23 (see Chapter 1
for a definition of Q-Scan). Parameter A represents
the starting Subaddress and N represents the initial
Station number for the scan operation. Note that
the ending values of A and N are not returned.

Example: Read a digltized waveform from a 4022 .
Transient Recorder at Station 8 of Crate 1 using block

29

fransfer routines. Only the lower 14 bits of each CAMAC
word are read.

main{)
{
HDRVR chan;
short int c.naf;
short int mode;
long transcnt;
long int datarr[500];
char statusarr[10};
char *device="CAM";

caopen(&chan, device, statusarr);
if(statusarr[0] 1= 1)

{
/* error */
camsg(statusarr);
return -1;

}

/* Select Channel 2 on the 4022 by writing the channel
/* number to the module with F{17).A(0) command.
*/
c=1;
n=8;
a=0;
f=17;
data=2;
camlé(&chan,&c,&n,8&a,&f &data,statusarr);
if(statusarr[0] 1= 1)
{
/* error */
camsg(statusarr);
return -1;

30

}

/* Read out digitized waveform from Channel 2 of the /*
4022

/* with Q-Stop Block Transfer Read operation using an
/* F(2).A{0) Command

¢/

c=1;

n=8;

a=0;

f=2;

mode = QSTP;

transcnt = 500;

cab24(&chan,&c,&n,&aq,&f,&mode,datarr, &transcnt,statusarr);
if(statusarr[0] I=1)

{
/* error */
camsg(statusarr);
return -1;

}

caclos(&chan, statusarr);
if(statusarr[0] 1= 1)

{ /* error */
camsg(statusarr);
return -1;
}
retun 1;
}
Control and Status Calls

With the control and status calls, you can Initialize or Clear a'crcfe.
change the state of crate Inhibit, select the default crate, read crate

31

status, and read the status of the last CAMAC operation.

CACITRL

Subroutine CACTRL performs cratewide CAMAC control operations.
These operations are addressed to the crate controller by the 2927 with
a target Station address of N(30). This subroutine takes the form:

CACTRL (&chan,&C,&func,Status Array)

Parameter

chan

func

StatusArray

Description

HDRVR (defined in windows.h)

The handlie assigned to the CAMAC interface.
The parameter ““chan” is initialized by
Subroutine CAOPEN.

short int{supplied}
The number of the CAMAC crate to be selected.

short int{supplied}

The function to be executed at Station N=30.
The list of functions is described in Table 4.2. The
Include File causer.h contains the control function
names as defined parameters.

long int array[10]{returned}

StatusAmray contains information from the 1/0
operation performed. It is a ten-word long int
array

32

Table 3.2: CAMAC Crate Controller Functions

INIT Performs a CAMAC Initialize (Z) operation
(func=0).

CLEAR Performs a CAMAC Clear (C) operation
(func=1).

SETINH Causes CAMAC Crate Inhibit (1) to be set
(func=2).

CLRINH Causes CAMAC Crate Inhibit (I} to be
cleared (func=3).

ONLINE Provides for compatibility with other systems
(func=4).

CCSTAT

Subroutine CCSTAT returns the crate controller status. It takes the form:

CCSTAT (&chan,&C,CrateStatus, StatusArray)

Parameter

chan

Description

HDRVR (defined in windows.h)

The handle assigned to the CAMAC interface.
The parameter ““chan” is initialized by
Subroutine CAOPEN.

short int{supplied}
The number of the CAMAC crate to be selected.

338

CrateStatus long inf{returned}
Contains the status returned from the crate
controller (See Table 3.3, for a description of
returned information).

StatusAmrray long int aray(é}{returned}
StatusAmray contains information from the 1/O
operation performed. It is a six-word long int array
(see Table 3.4).

Table 3.3: Crate Controller Status Array

CrateStat Contains "1"if Crate Inhibit (1) is set; “0"if | is
(INHBIT) clear (INHBIT=1).

CrateStat Contains "1"if the crate controller L-SUM bit is
(LSUM) set; "0" if L-SUM is clear (LSUM=2).

CrateStat Contains the contents of the crate conftroller
(LAMREG) LAM register (LAMREG=3).

CrateStat Contains the contents of the crate conftrolier
(CCCSR) Status register (CCCSR=4).

CAMSG

Subroutine CAMSG evaluates the error code returned from another
CAMAC subroutine and prints the appropriate eror message. If the
error is fatal, CAMSG exits the program. This subroutine takes the
following form:

34

CAMSG (StatusArray)

Paragmeter Description
StatusAmray long inH{supplied}

This argument is the error returned from a previous
CAMAC call which is to be evaluated. Status can
be the first long int word of the StatusArray
returned by a subroutine or the function value
returned by any of the subroutines.

Status Array

All of the FORTRAN calls return a status array. This array contains
information on the last call to the CAMAC routines. At the simplest
level, it indicates whether the I/O request was successfully performed.
StatusArray(ERR)=1 indicates successful completion of the 1/0 operation
(no errors). Additional information on the success or failure of the 1/0
request in the status array is indicated in Table 3.4. In addition, specific
return error codes are listed in Appendix A. Note that the Subroutine
CAMSG can be used to decode the returned error number.

35

Table 3.4: Return Status Array

Status Aray

Status Amray

Status Array
{ERS}

StatusAmray

StatusAmray
response {QXSUM}

StatusAray
transactions {IC})

Emor Status: Contains the retumed emor code. A retum status

{ERR} of "1" indicates a successful transfer (no
eror). Any other value indicates an error or
waming (ERR=1).

Control/Status Register: Contains the state of the 2927 {CSR}
Control/Status register when an error occurs. A "0"is reflumed
for a successful fransfer (CSR=2).

Error Status Register: Contains the state of the 2927 ErorStatus
register when an error occurs. A “°0" is retumed for a successful
transfer (ERS=3).

List Status Register: This is ALWAYS returned as "0". itis {LCSR}
provided for software compatibility with other devices
{LCSR=4).

Q and X Sum: Contains two bits; one bit is set by an X=0

and the other by a Q=0 response. The value returned is "0" if all
CAMAC operations in the I/O request gave Q=1 AND X=1;"1"
if one or more Q=0 responses occurred; 2" if one or more X=1
responses occurred; and "3"if one or more Q=0 AND X=0
responses occurred (QXSUM=5).

Transaction Count: Contains the number of CAMAC
performed by the I/O request. If the 1/O request is
terminated by word count, the value retumed is the
requested ““TransCount.” If the request is terminated
by any condition other than word count, the value
retumed is one more than the number of successful
CAMAC Write operations or the number of successful
CAMAC Read operations {TC=6).

36

Chapter 4

Advanced Routines

This chapter presents the Advanced Routines for CAMAC. These
routines are designed for the advanced CAMAC user who is trying to
design applications software requiring high throughput at minimum
overhead. The concept of the Advanced routines are such that a good
understanding of CAMAC and programming is desirable.

Operating System Considerations

Many data acquisition and control applications must achieve high
throughput and/or meet critical timing constraints. On the other hand,
operating systems, in general, impose various constraints that can
severely limit throughput if the application programs are not properly
designed.

The CCL approach can significantly improve throughput where many
small 1/O requests can be blocked into one or fwo large block transfers.

Advanced Foriran Interface

The purpose of the Advanced Fortran Interface is to provide the user
with a set of routines to build CAMAC Control Lists (CCL), call the driver
with a CCL, and interpret the buffers and data structures that the driver
returns.

37

CAMA»C Control List Functionality

The CAMAC Control List structure is designed to provide access to all
the basic functions discussed in Chapter 3. However, rather than each
‘CALL resulting in a I/O request, these routines block up the callsinto a
CCL and pass the CCL to the driver in a single 1/O request. Thus, from
asingle CCL, it is possible to perform a list of Read and Control or Write
and Control operations which include single NAF operations and
- standard CAMAC block transfer operations. It is also possible in Read
and Control lists to imbed special inline write operations for control
purposes. With some hardware configurations, both Read and Write
operations can be mixed in the same list, but this is not recommended.

The actual structure of the Control List, referred to as the
Command ListProtocol (CLP), is presented in the Appendix C.
However, the details of the structure need not be mastered to use
the Advanced Fortran routines. It should be noted that the driver
and the I/0 request interface handle all I/O requests using the CLP.
The standard CAMAC routines actually call the Advanced Fortran
routine to generate a one item CCL.

CCL Data Structures

Because of the variety of operations allowed in the CCL and the
information which can result from a CAMAC operation, a number of
data structures are required to specify and return information. Besides
the data buffer and the CAMAC Control List, which are mandatory, the
following additional data structures are provided:

® The QXE buffer to return the CAMAC Q, X, and eror

responses.
® The Word Count Buffer for Block Transfers.
* The Return Status Buffer. -

In Addition, to simplify management of these buffers a Header is

38

defined. It is the address of the Header which is passed in the QIO call
to the driver. The Header data structure contains pointers to all the
other data structures (see Figure 4.1).

Header CAMAC Control List

Header Buffer Size

Version Number . .

Read or Hrite Function o .

Maximum CAMAC Control List Size

Actual CAMAC Control List Size
Data Buffer

Address of CAMAC Control List >

Maximum Data Buffer size

Actual Data buffer size . N

Address of Data buffer

Return Status Buffer Size

Address of Return Status Buffer] CAMAC Status Buffer

Size of Word Count Buffer

Address of Word Count Buffer . .
Size of QXE Buffer . .
Address of QXE Buffer ~]
[_ QXE Buffer Word Count Buffer

Figure 4.1: QIO Data Structures

39

Header

The Header data structure is an amray declared in the users program
and is filled in by the routine calNIT. It consists of pointers to the other
structures and is the common argument to all the other routines.
Separate Headers are required when multiple I/0O requests are to be
gueved to the driver at the same time. A separate Data Buffer, CCL,

" QXE Buffer, Word Count Buffer, and Return Status Buffer is associated

with each Header.
Data Buffer

The Data Buffer is a user defined amray which contains the Write Data,
or receives the Read Data. This buffer must be large enough to hold
the data for all the entries in the CCL. Calls to any of the Advanced
Fortran routines which define commands involving transfer of data will
result in allocating space from the data buffer. In addition, it will return
an argument containing the index into the buffer where the beginning
of the data for that call will reside. Note that it is the users responsibility
to load data into the data buffer for write operations and to move
data from the buffer for read operations.

CAMAC Control List

The CAMAC Control List is a list of commands which are either directed
by the driver to the CAMAC hardware interface or are interpreted by
the software driver. Calls fo the List Building routines make entries in this
buffer.

QXE Buffer

The QXE buffer is a user declared buffer to hold the Q, X and error for
single CAMAC fransfer exceptions that occur during execution of a list.
Only single CAMAC transfer exceptions are logged in the QXE buffer.

40

CAMAC block transfer exceptions are logged in the Word Count Buffer.
An exception is defined as a condition that occurs during the List
execution which is unexpected for the prevailing mode of operation.
For example, a Q=0 condition during a Q-STOP CAMAC operation.
Entries in this buffer are in order of occurrence, and if the number of
exceptions exceed space in the buffer, those which occur after the
buffer is full will be lost. In many applications the individual Q, X and
Error exceptions may not be critical, however, what is desired is the
exclusive OR of the responses. This information is returned in the Return
Status buffer.

Word Count Buffer

The Word Count Buffer is a user declared buffer where CAMAC Block
Transfer exceptions are logged. An exception for a Block Transfer is any
condition that results in the transfer of fewer words than specified by the
Block operation in the CCL or an ermor condition. The exception
condition is stored in the Word Count Buffer and contains the remaining
word count for the block operation where the exception occurred. The
Word Count Buffer only logs exceptions for CAMAC Block: Transfer
operations, non-block exceptions are logged in the QXE buffer. The
exception information may be useful, for example, when a Q=0 occurs
in a Q-STOP block operation prior to transferring the requested number
of words.

Return Status Buffer

The Return Status Buffer is a user declared buffer that receives the return
status conditions relating to the list operation.

Advanced Routine Summary

The Advanced Fortran CAMAC Interface Routines can be divided into
four groups:

* The Initiglization Routines which inifialize the data

41

structures.

* The List Building Routines provide a simple means for
building CCL lists.

* The Execution Routines perform the required QIO
operation passing the CCL1to the driver for execution of
the 1/O operation(s).

* The List Analysis Routines used in conjunction with the List
Building Routines provide the user with the tools to
extract and interpret the data and status structures
returned.

The following table summarizes the Advanced Fortran Routine calls:
Inltialization Routines
caOPEN (Chan, Device, Error)
caCLOS ({ Chan, Error)
calNIT (Header, CCList, LisMax, Data, DatMax, Status, WC,
WCMax, QXE, QXEMax, Error)
List Building Routines
caNAF (Header, C, N, A, F, mode, Datlind, Error)
calNAF | Header, C, N, A, F, mode, IniData, Error))
caBLK [Header, C, N, A, F, mode, DatCnt, Datind, Error)
caEBLK { Header, C, N, A, F, mode, DatCnt, Datind, Error)
caHALT (Header, Error)
List Transfer Routines

caEXEW (Header, Chn, Error)

List Analysls Routines

42

caMsSG (error)

Initialization Routines

The initialization routines caOPEN and caCLOS make operating system
calls to assign or deassign a channel number for I/O to CAMAC . In
most applications the caOPEN routine need only be called once early
~ in the program.

The routine calNIT is provided to initialize the data structures required for
the 1/0 operation to the CAMAC driver. This routine should be called
prior to building each new CAMAC Control List (CCL). In applications
where the CCL does not change between 1/O requests, multiple calls
to the transfer routines can be made with the same CCL.

caOPEN

caOPEN assigns a channel to a device. The device will be referenced
through the channel number. This routine should be called only once
for each physical device (2927). Note that this is the same routine
described in the chaper on basic routines. This subroutine takes the
following form:

FORTRAN:
CAOPEN (chan, "CAM:", StatusArray)
INTEGER*2 chan
INTEGER*4 StatusArray(STAMAX)

caopen (&chan, &device_name, StatusArray);
short int chan;
DESCRIPTOR(device_name, "CAM:");
long int StatusArray[STAMAX];
Parameter Description

Chan The channel number assigned to the CAMAC

43

interface by DOS. The logical unit to be used for
CAMAC I/0.

Device The name of the device to be accessed. The
logical device name must be followed by a
colon. Example: 'CAM!. The device name CAM
is for the 2927 driver. '

StatusArray The return emor code, a return value of one
means no emor. The subroutine, if called as a
function will return the same value as Error.

caCLOS

caCLOS will deassign an already assigned channel. The channel has
been previously assigned to a device with the subroutine caOPEN.
Note that this is the same routine described in the chaper on basic
routines. This subroutine takes the following form:

FORTRAN:
CACLOS (chan, StatusArray)
INTEGER*2 chan
INTEGER*4 StatusArray(STAMAX))

caclos (&chan, StatusAmrray);
short int chan;
long int StatusAmray[STAMAX J;

Parameter Description

Chan The device channel number for CAMAC
operations.

StatusArray The return error code, a return value of one

means no ermor. The subroutine, if called as a
function will return the same value as Error.

44

calNIT

The routine calNIT is used to initialize the Header and the other data
structures. It should be called whenever a new CAMAC Control List is
to be built. The Header holds the sizes, lengths, and pointers to the
other data structures. The Header is a parameter for most of the other
subroutine calls. Arguments to calNIT include user declared arays and
array sizes which will be used by the List Building Routines and the
CAMAC driver. These arays must be declared sufficiently large by the
user to hold the needed information. For example, the Data Buffer
must be large enough to hold the data for all commands in the list, the
CCL to hold the CAMAC Control List, etc. Since these data structures
are dynamically allocated, the user need not be concemed if the data
structures are larger than required. (The only effect is that the program
will require more memory than is required by the commands defined
in the list.) This subroutine takes the following form:

FORTRAN:
calNIT (Header, CClist, LisMax, Data, DatMax, Status,

WC, WCMax, QXE, QXEMax, Error)

INTEGER*2 DATA(DatMax)

INTEGER*4 Header (HEDMAX), CClList { LisMax),
LisMax, DatMax, Status { STAMAX),
WC [WCMax), WCMax, QXE { QXEmax),
QXEmax, Error

cainit (&Header, CClList, &LisMax, Data, &DatMax,
Status, WC, &WCMax, QXE, &QXEMax, &Error);
short int DATA [DatMax 1;
long int CClList [LisMax], LisMax, DatMax,
Status [STAMAX |JWC [WCMax],
WCMax, QXE [QXEmax], QXEmax,
- Error;
struct s_header Header;

Parameter Description

45

Header

CClist

LisMax

Data

calNIT initialize the long word Header amray. The
information in the Header consists of pointers to
the other data structures, the sizes and lengths of
the other data structures, and Header constants.
HEDMAX is a parameter declared in the include
file CAUSER.inc for Fortran and CAUSER.H for C
that specifies the size of the Header array. This
variable is the actual name of the list.

The long word array that will hold the CAMAC
Control List. The CAMAC Control List should be
declared as a long word array with a size of
LisMax.

The number of elements available in the
Command List aray. The Command List should be
declared as a long word amray with a size of
LisMax. Example:

Integer*4 LisMax

Parameter (LisMax = 100)

Integer*4 List (LisMax)

The value of LisMax must be declared by the user
to be sufficiently large so that the array
List{LisMax) can hold the largest CCL that the user
plans to generate. The size of the CCL can be
estimated from the number of calls to the List
Building Routines. Refer to Table 4.1 for the
number of CCL elements allocated per call. The
driver requires an extra four words beyond the
end of the CCL to ensure proper list termination.
Thus, LisMax must be at least four words longer
than the longest CCL you plan to generate.

This array will hold the Data for all requests in the

associated CCL. The Data Amay should be
declared as a word array with a size of DatMax.

46

DatMax The size of the Data Amray in words. The Data Array
should be declared as a word array with a size of
DatMax. Example:

Integer*4 DatMax
Parameter (DatMax = 100)
Integer*2 Data (DatMax)

The value of DatMax must be declared by the
user to be sufficiently large so that the amray
Data(DatMax} can hold the data from all
requests in the associated CCL including all block
transfer requests.

Status A long word amray that will return the CAMAC driver's
status. The one word array Status should be declared
with a size of STAMAX. STAMAX is a parameter declared
in the include file CAUSER.INC for Fortran or CAUSER.H for
C.

WC The one word armray that will hold the CAMAC
driver's return Word Count Buffer. The WC buffer
is an optional buffer and is ignored if WCMax is
zero. The WC Buffer should be declared as a long
word aray with a size of WCmax. WCmax should
be four times the number of Word Count Records
desired (the Word Count Record is four long
words). The Word Count Buffer is used to record
exception information for block transfers that
terminate because of emor, Q, X, or N>23
conditions.

WCmax The number of elements available in the WC
Buffer. If a WCmax of zero is given, the WC Buffer
will be ignored. The WC Buffer should be declared
as a long word amray with a size of WCmax.

47

QXE

QXEmax

Error

WwCmax should be four times the number of Word
Count Records because each Word Count record
is four long words.

The long word amray that will hold the CAMAC
driver's QXE Buffer. The QXE Buffer is an optional
buffer and is ignored if QXEmax is zero. The QXE
Buffer should be declared as a long word array
with a size of QXEmax. QXEMax should be three
times the number of QXE Records (the QXE
Record is three long words). The QXE buffer is
used to record exception information for Single
Action CAMAC operations.

The number of elements available in the QXE
Buffer. if a QXEmax of zero is given, the QXE Buffer
will be ignored. The QXE Buffer should be
declared as a long word amray with a size of
QXEmax. QXEmax should be three times the
number of QXE Records. This is required in that
each QXE Record is three long words.

The return eror code, a return value of one

means no error. The subroutine, if called as a
function, will return the same value as Error.

Table 4.2 : CAMAC Command List Element Lengths

Routine Action Longwords

CANAF Single CAMAC Transfer]

CAINAF Single CAMAC Transfer Inline 2
Write

CABLK Standard CAMAC Block 2
Transfer

CAHALT List Termination 4

List Building Routines

The List Building Routines are designed to help the user build CAMAC
Control Lists (CCL). In using these routines the user must keep in mind
that they do not directly cause any 1/O operations, but rather build
CClLs. Data is transferred to or from the data buffer when the CCL is
passed to the driver by calling one of the Execution Routines. Note that
the List Building Routines do not move data to or from the data buffer,
but rather allocate space in the data buffer and return an index where
the user must place the data in the data buffer for Write operations,
and where the user can get the data in the data buffer following a
successful Read operation.

It is strongly recommended that control lists be restricted to consist of
either Read (FO-F7) and Conftrol {F8-F15, F24-F31) or Write (F16-F23) and
Control {F8-F15, F24-F31). Although some KineticSystems Corporation
interfaces and drivers will allow mixed Read and Write operations,
some hardware configurations (particularly DMA) do not support bi-
directional data flow on a Command List Element by Command List

49

Element basis.

caNAF

The routine caNAF adds a command to the CAMAC Control List which,
when executed, will result in a single CAMAC transaction. This
command will allocate one element in the CCL. If the CAMAC
operation is a Read (F0-7) or Write (F16-23) operation, then space in the
 data buffer will also be allocated. The parameter Datind will be
retumed with a value corresponding to the Fortran index into the data
buffer Data where the data is to be located Data(Datind). Note the
data buffer Data is the name of the data buffer passed to the calNIT
routine. For write operations, the user must place the datain the data
buffer prior o executing the CAMAC transfer routine. For Read
operations, the data read can be retrieved from the data buffer
following the execution of a successful CAMAC transfer operation. This
subroutine takes the following form:

FORTRAN:
caNAF (Header, C, N, A, F, mode, Datind, Error);
INTEGER*2 C,N, A, F, mode
INTEGER*4 Header { HEDMAX), Datind, Emor

C:
canaf (&Header, &C, &N, &A, &F, &mode, &Datind, &Emor);
short int C.N, A, F, mode;
long int Datind, Error;

struct s_header Header;

Parameter Description

Header Header armray is the amray or structure built by
calNIT and contains pointers to the CAMAC
Control List and Data buffer. .

C The number of the crate (C) to be selected.

50

mode

Datind

Error

calNAF

The Station number (N) of the module to be
selected.

The subaddress (A) to be selected within the
module.

The CAMAC Function Code (F) to be performed.

The type of single CAMAC operation to be
performed. The mode byte specifies the word size
(16-bit or 24-bit), transfer type (Q-Stop, Q-Ignore,
Q-Repeat, or Q-Scan), and abort condition.

The argument Datind is returned with the index
into the Data Buffer marking the location within
the Data Buffer for the data to be read or written
by the CAMAC operation. For CAMAC read
operations, the index can be used to access the
data after the CAMAC Control List has been
executed. For CAMAC write operations, Datind
can be used to move the data to be written to
the data buffer before the CAMAC Control List
has been executed.

The return error code, a return value of one
means no eror. The subroutine, if called as a
function, will return the same value as Error.

The routine calNAF adds a command to the CAMAC Control List which
when executed will result in a single CAMAC Write fransaction. This
command will allocate two elements within the CCL. The data o be
written is specified in the call and is stored in the CCL as part of the
Inline Write command. The purpose of this routine is to allow the user to
write control information to a module without having to imbed the

51

control data in the data buffer. It is typically used in Read operations
where limited control information must be written to the module to
select the data to be read. The data for the CAMAC operation is
placed directly in the CAMAC Control List by this routine. Only CAMAC
function code for control and write operations are allowed by this
routine. This subroutine takes the following form:

FORTRAN:
calNAF (Header, C, N, A, F, mode, IniDat, Error)
INTEGER*2 C,N, A F, mode
INTEGER*4 Header { HEDMAX), IniDat, Emor

C:
cainaf(&Header, &C, &N, &A, &F, &mode, &inlDat, &Emror);
short int C.N, A, F, mode;
long int IniDat, Error;

struct s_header Header;
Parameter Description
Header Header amray is the aray or structure built by

calNIT and contains pointers to the CAMAC
Command List and Data buffer.

C The number of the crate {C) to be selected.

N The Station number (N) of the module to be
selected.

A The subaddress (A) to be selected within the
module.

F The CAMAC Function Code (F) to be performed.

mode The type of single CAMAC operation to be

performed. The mode byte specifies the word size
(16-bit or 24-bit), transfer type (Q-Stop, Q-Ignore,

52

Q-Repeat, or Q-Scan), and abort condition.

inlDat The 24 bits of data to be written by the CAMAC
operation. If the CAMAC operation is a control
function the data is ignored.

Error The return emor code, a return value of one
means no eror. The subroutine, if called as a
function will return the same value as Emror.

caBLK

The routine caBLK adds a command to the CAMAC Control List which,
when executed, will result in a CAMAC block transfer operation. This
command will allocate two elements within the CCL. In addition,
space is allocated from the data buffer based on the parameter
DatCnt. Note CAMAC control functions (F8-15, F24-31) are not valid for
block operations. The block fransfer can be Q-Stop, Q-Repeat, Q-Scan,
or Q-Ignore. The type of transfer and whether the transfers are 16-bit or
24-bit are controlled by the mode argument. This subroutine takes the
following form: '

FORTRAN:
caBLK (Header, C, N, A, F, mode, DatCnt, Datind, Error)
INTEGER*2 C, N, A, F, mode
INTEGER*4 Header { HEDMAX), DatCnt, Datind, Error

cablk (&Header, &C, &N, &A, &F, &mode, &DatCnt,
&Datind, &Error);
short int C. N, A, F, mode;
long int - DatCnt, Datind, Error;
struct s_header Header

Parameter Description

Header Header array is the armray or structure built by

53

mode

DatCnt

Datind

calNIT and contains pointers to the CAMAC
Control List and Data buffer.

The number of the crate (C) to be selected.

The Station number (N) of the module to be
selected.

The subaddress (A) to be selected within the
module.

The CAMAC Function Code (F) to be performed.

The type of the CAMAC block transfer operation
to be performed. The Mode contains the type of
the CAMAC block transfer operation to perform
(Q-scan, Q-stop, Q-repeat, Q-ignore), the size of
the data to be transferred (24-bit, 16-bit), and the
no abort condition.

The number of 16-bit words to be read or written
by the CAMAC block transfer operation. Note
that for 24-bit transfer operations that DatCnt
must reflect the fact that each 24-bit CAMAC
transfer requires two 16-bit words.

The argument Datind is returned with the index
into the Data Buffer marking the starting location
for the block of data to be read or written by the
CAMAC operation. For CAMAC read operations,
the index can be used to access the data after
the CAMAC Control List has been executed. For
CAMAC write operations, Datind can be used to
move the data to be written into the data buffer
before the CAMAC Control List has” been
executed. As an example, for a write operation
the user must load the data into the Data Buffer

54

Error

CaHALT

beginning with the location Data(Datind) and
continuing through Data(Datind + DatCnt). This
must be accomplished prior o executing the
CAMAC Control List.

The return error code a retumn value of one means
no error. The subroutine, if called as a function will
return the same value as Error.

The routine caHALT adds a command to the CAMAC Control List which
marks the end of the control list. This command allocates one element
in the CCL. For proper operation of the driver the CCL must have the
list properly terminated.

This subroutine takes the following form:

FORTRAN:

caHALT (Header, Error)
INTEGER*4 Header { HEDMAX), ERROR

cahalt (&Header, &Error);
Short int Error;
struct s_header © Header;

Parameter

Header

Error

Description

Header armray is the array or structure built by
calNIT and contains pointers to the CAMAC
Command List and Data buffer.

The return eror code, a return value of one

means ho error. The subroutine, if called as a
function will return the same value as Error.

55

Transfer Modes

The mode argument controls various aspects of the CAMAC operation.
These include whether the transfer is 16-bit or 24-bit, and is also used to
specify the action to be taken in response to the values returned for Q,
X and error conditions for the commands within the CCL. The various .
modes are summarized in Table 4.2, Table 4.3 and Table 4.4. These
.. transfer modes can be added or ORed together to specify the mode
for the Advanced List routines. If a mode is not specified, the default
mode will be used. For example, if a 16-bit Q-STOP transfer was desired
the mode would be QSTP+WIS16. If the mode WTS146 was not specified,
then the Fortran Subroutines will use the default mode WT3524

56

Table 4.3 : Advanced Block Transfer Modes

QSTP
(mode =0)

Performs a Q-Stop CAMAC block transfer operation.
This mode continues to transfer the block of data
until the data amray is exhausted or a NO-Q is
received. (Default)

QIGN
{(mode = 8)

Performs a Q-lgnore CAMAC block transfer
operation. This mode transfers the block of data until
the data amay is exhausted.The Q response is
ignored.

QRPT
(mode = 16)

Performs a Q-Repeat CAMAC block transfer
operation. This mode transfers the block of data until
the data amray is exhausted. Whenever a Q = 0
response is received during the block, the Dataway
operation is repeated and the data array address
pointer is not incremented.

QSCN
(mode = 24)

Performs a Q-Scan CAMAC block transfer operation.
This mode transfers a block of data until the data
array is exhausted or N>23 . Parameter A represents
the starting Subaddress and N represents the initial
Station number for the scan operation. Note that the
ending values of A and N are not returned.

Table 4.4 : Advanced Word Size Modes

WTS16 Performs 16-bit CAMAC transfers.
(WTS16=2)

WTS24 (DEFAULT) Performs 24-bit CAMAC fransferd.
(WTS24=0)

57

Table 4.5 : CAMAC Operation Abort Condition

ABORT CAMAC operation abort condition disable.
When this parameter is specified such
conditions as X=0, transmission error, etc. will
be ignored, and the I/O operation will be
reported successful regardless of any emor
conditions. (ABORT=1)

List Execution Routines

The List Execution Routines use the Header to initiate a call fo the driver
for processing of the associated CCL. The routine caEXEW calls the
driver and waits for I/O completion before returning to the user.

- caEXEW

This routine passes the CCL and associated data buffer as determined
by the Header amray to the CAMAC driver. Control is not returned to
the user process until the I/O operation is complete. This subroutine
takes the following form:

FORTRAN:

caEXEW (Header, Chan, Error)
INTEGER*2 Chan
INTEGER*4 Header{ HEDMAX), Error

caexew (&Header, &Chan, &Error);
struct s_header Header;

short

long
Parameter

Header

Chan

Error

int Chan
int Error;
Description

Header armray is the amray built by calNIT and
contains pointers to the CAMAC Control List and
Data buffer.

The device channel number for CAMAC
operations.

The return emror code, a return value of one

means no error. The subroutine, if called as a
function, will return the same value as Error.

59

Advanced List Building Example

PROGRAM EXADV
c
C THIS ROUTINE DEMONSTRATES HOW TO USE SOME OF THE C ADVANCED
FORTRAN
C ROUTINES TO BUILD AND EXECUTE A LIST OF CAMAC
C COMMANDS.
C
' IMPLICIT NONE
c
SINCLUDE "CAUSER.INC'
C
INTEGER®4 ERRSTA(STAMAX)
INTEGER®2 CHAN, CRATE, N3610, N3655, N3512, N3074, |

INTEGER®4 LISMAX, DATMAX, WCMAX, QXMAX

PARAMETER (LISMAX = 100, DATMAX = 30, WCMAX =8, QXMAX = §)
INTEGER®4 LABLST(HEDMAX), CCLIST(LISMAX), WC(WCMAX)
INTEGER*4 QXE(QXMAX), ERROR, STATUS(STAMAX)

INTEGER"4 NAF1,NAF2
INTEGER*2 DATARR(DATMAX)
INTEGER*2 MODE, INLDAT, DATCNT, ENDBLK

N3076=3
N3610=11
N3512=19
CRATE=1
Cc
C OPEN CHANNEL TO CAMAC
Cc
IF(CAOPEN (CHAN, "CAM:', ERRSTA) .NE. 1) THEN
CALL CAMSG (ERRSTA)
ENDIF
Cc
C PUT SERIAL HIGHWAY ONLINE
c
CALL CACTRL (CHAN, CRATE, ONLINE, ERRSTA)
Cc
C INITIALIZE THE CAMAC CONTROL LIST
c
IF (.(NOT. CAINIT(LABLST, CCLIST, LISMAX, DATARR, DATMAX, STATUS,
1 WC, WCMAX, QXE, QXMAX, ERROR)) THEN

60

CALL CAMSG(ERROR)

ENDIF
c
C BUILD THE CAMAC CONTROL LIST. THE FOLLOWING CAMAC C ACTIONS WILL
BE
C BUILT INTO THE LIST:
c
C 1) 14 BIT READ OF CHANNEL ONE FROM A 3610 COUNTER C MODULE.
C 2) 16 BIT Q-SCAN READ OF 16 CHANNELS FROM A 3512 ADC C MODULE.
C 3) 16 BIT WRITE (DATA=7) TO 3075 OUTPUT MODULE.

c
MODE = 2
CALL CANAF(LABLST, CRATE, N3610, 0, 0, MODE, NAF1, ERRSTA)
WRITE(®,%)" POINTER INTO DATA LIST = ',NAF1
MODE = 26
DATCNT = 16
CALL CABLK(LABLST, CRATE, N3512, 0, 0, MODE, DATCNT, NAF2, ERRSTA)
WRITE(*,*)" POINTER INTO DATA LIST = ,NAF2
MODE = 2
INLDAT = 7 .
CALL CAINAF(LABLST, CRATE, N3076, 0, 16, MODE, INLDAT, ERRSTA)
c
C TERMINATE THE LIST.
c
CALL CAHALT (LABLST, ERROR)
c
C EXECUTE THE LIST. WAIT UNTIL DONE TO CONTINUE
C EXECUTING ROUTINE.

C THIS LIST MAY BE EXECUTED AT ANY TIME WITHIN THIS
C ROUTINE AND AS
C OFTEN AS DESIRED.
c
IF (.NOT. CAEXEW (LABLST, CHAN, ERROR)) THEN
CALL CAMSG(ERROR)
ENDIF
c
C LOOK AT THE DATA FOR THE TWO READ OPERATIONS. NAF1
C AND NAF2
C ARE POINTERS INTO THE DATA ARRAY FOR THE RESPECTIVE
C READ OPERATIONS.
c .
WRITE(®,*)" DATA FROM 3610 =", DATARR(NAF1) -

ENDBLK = NAF2 + 16
DO 888 | = NAF2, ENDBLK

61

WRITE(*,*)" DATA FROM 3512 = ', DATARR(l)
888 CONTINUE
c
END

62

List Analysis Routines

CAMSG

Subroutine CAMSG is used fo evaluate the error code which is returned

from the CAMAC subroutines. This subroutine will print the appropriate

error message associated with the emor code. If the emor is fatal,
CAMSG exits the program. This subroutine takes the following form:

CAMSG (Emor)
Parameter Description

Error This argument is the emror code returned from a
previous CAMAC call which is to be evaluated.
The error code is returmed as the first integer®4
word of the StatusAmray used in each subroutine
call. In addition, it can also be obtained as the
function value returned by any of the subroutines
when the call is used as a function subroutine.

CAMSG Format

CAMSG reports the error message on the users terminal. If the error is
fatal CAMSG exits the program. In some applications it may be
desirable to have CAMSG print the message, but return to the user
even if the error is "fatal.” This can be accomplished by clearing the
low-order three bits in the error message number before it is passed to
CAMSG. This has the effect of turning all messages into warning
messages which are posted on the user terminal, and execution
continued.

INTEGER®4 camroutine ,StatusArray(StaMax)

CAMAC I/O operation
CALL CAMSG(StatusArray(ERR))

63

The following shows the amrangement of the bits in the message code.

31 28 27 16 15 32 0
CONIROL FACILITY# MESSAGE# SEVERITY

The low-order three bits represent the severity of the error.

Status Buffer

The following table illustrates the structure of the status array. This array
is declared by the user program and is pointed to by the Header.

Stat A Return Status of one indicates successful completion. Any
other Return Status indicates a waming, error, or information. The
following bit fields will classify the warning, error, or information:

31 32 0
Status Number Error
ERROR (bits 2 - 0), severity of error
000 Warning
001 Success
010 Error
0N Informational
100 Severe or fatal error
101 Reserved
110 Reserved
111 Reserved

STATUS NUMBER {bits 3- 31), number used to further classify
error.

StaCSR A variable returning the 3968 CSR Register for run time
CAMAC ermrors. The CSRregister is only returned when the
Command List is exited because of a CAMAC error. The
value stored in the status amay is amanged consistent with

64

StaERS

StalCs

StaSum

StaCnt

Stalls

StaDat

StaWC

StaQXE

the status bit layout of the 3968 Svfctus Register.

A variable returning the 3968 ERS Register for run time
CAMAC errors. The ERS register is only returned when the
Command List is exited because of a CAMAC error.

A variable returning the 3968 LCSR Register of the list
processor for run time CAMAC errors. The LCSR register is
only retumed when the Command List is exited because
of a CAMAC error and the List Processor is running.

A variable using bit 1 to indicate the sum of CAMAC
NO-X responses and bit 0 to indicate the sum of CAMAC
NO-Q responses for all the CAMAC operations in the
Command List. If there were any CAMAC NO-Qs, bit zero
of StaSum would be set and if there were any CAMAC
NO-Xs, bit one of StaSum would be set.

A variable retuming the number of words not transferred
for the last Block Transfer operation. A zero will be
returned if the last Block Transfer operation was
successful or if there were no Block Transfers in the
Command List.

A variable returning the Fortran index into the CCL of the
last command in the Command List which was executed
by the driver.

A variable retuming the Fortran index into the Data Buffer
of the last Data word read or written by the driver.

A variable returning the total number of Word Count
Buffer emors that have occurred. This number can be
greater than the number of Word Count Buffer records.

A variable retuming the number of QXE Buffer errors that

have occumred. This number can be greater thon the
number of QXE Buffer records.

65

Word Count Buffer

The following table illustrates the structure of the Word Count Buffer. This
array is declared in the user program and has its address loaded into
the Header by a call to the routine calNIT.

31 0
WCERS
WCCnt
WClLis
WCDat
WCERS A position inside the amray containing the 3968 ERS
register.
WCCnt A position inside the amay containing the number of
words not transferred.
WClLis A position inside the amray containing the Fortran index
into the Command List where the error occurred.
WCDat A position inside the array containing the Fortran index

into the Data Buffer where the error occurred.

66

QXE Buffer

The following table illustrates the structure of the QXE Buffer. This array
is declared in the user program and is pointed to by the Header.

31 0
0 QXEERS
QXELis
QXEDat

QXEERS A position inside the amray containing the 3948 ERS
register.

QXELIs A position inside the amray containing the Fortran index
into the Command List where the emror occurred.

QXEDat A position inside the array containing the Fortran index
into the Data Buffer where the emror occurred.

67

Appendix A

Error Numbers

The driver and language interface perform various checks on both the
parameters passed by the calling program and the operation of the
hardware. When an eror is detected, these routines return an error
code to the calling program. This appendix contains a listing of errors
and their messages. Many of the errors can only be generated by
improper calls to the advanced FORTRAN routines. These errors are
designated by the phrase (advanced FORTRAN routines).

101

102

103

104

105

The version number of the driver does not match the version
number found in the Header. Check to make sure all the
software is all at the same version number.

The length of the Data Buffer is greater than the specified size of
the Data Buffer (advanced FORTRAN routines).

The Header size does not match the Header size of the cumrent
version (advanced FORTRAN routines).

The length of the CAMAC Command List is greater than the
specified size of the CAMAC Command List {advanced
FORTRAN routines).

The Status Buffer size does not match the Status Buffer size of the
curmrent version (advanced FORTRAN routines).

68

106

107

108

109
110
1m

112

113

114

115

‘The process does not have either read or write access to the

Data Buffer. Check that the Data Buffer has been properly
declared.

The System does not have enough contiguous Real Time Page
Table Entries to double map the Data Buffer. The number of
Real Time Page Table Enfries can be changed by modifying the
Sysgen parameter REALTIME SPTS.

The process does not have a big enough Working Set to lock
down the Data Buffer. The Working Set size can be changed by
modifying the Authorize parameter WSquo.

Unknown VMS error while trying to lock the CAMAC Control List
into memory.

Unknown VMS error while trying to lock the Data Buffer into
memory.

Unknown VMS error while trying to lock the Status Buffer into
memory.

The CAMAC Control List does not have enough space at the
end for the CAMAC driver to insert a number of halt instructions.
The length of the CAMAC Control List must be four long words
less than the size of the CAMAC Control List so four Halt
instructions can be added.

The Data Buffer has a length of zero but must have a length of
at least one. A dummy word must be entered into the Data
Buffer (Header(Datlen)=1)(advanced FORTRAN routines).

The driver does not have read access to the Header. Check
that the Header has been properly declared. -

The size of the Header is over 64K words. Check that the

69

116

117

118

119

120

121

122

123

variable specifying the size of the Header has been declared as
a long word {INTEGER*4 variable) (advanced FORTRAN routines).

The process does not have either read or write access o the
CAMAC Control List. Check that the CAMAC Control List has
been properly declared.

The System does not have enough contiguous Real Time Page
Table Entries to double map the CAMAC Control List. The
number of Real Time Page Table Entries can be changed by
modifying the Sysgen parameter REALTIME SPTS.

The process does not have a big enough Working Set to lock
down the CAMAC Control List. The Working Set size can be
changed by modifying the Authorize parameter Wiquo.

The length of the CAMAC Control List is over 64K words. Check
that the variable specifying the length of the CAMAC Control
List has been declared as a long work (INTEGER*4 variable)
(advanced FORTRAN routines).

The CAMAC Control List does not fit in one segment. The CAMAC
Control List plus the CAMAC Control List offset cannot fit within
one segment (IBM PC only).

The size of the CAMAC Control List is over 64K words. Check that
the variable specifying the size of the CAMAC Control List has
been declared as a long word { INTEGER*4 variable) (advanced
FORTRAN routines).

The length of the CAMAC Control List is over 32K-1 words. The
largest CAMAC Control List allowed is 32K-1 words (advanced
FORTRAN routines).

The CAMAC Conitrol List has a size of zero but must have a size
of at least one (advanced FORTRAN routines).

70

124

125

126

127

128

129

130

131

132

The process does not have either read or write access to the
QXE Buffer. Check the address and the size of the QXE Buffer in
the Header.

The System does not have enough contiguous Real Time Page
Table Entries to double map the QXE Buffer. The number of Real
Time Page Table Eniries can be changed by modifying the
Sysgen parameter REALTIME SPTS.

The process does not have a big enough Working Set to lock
down the QXE Buffer. The Working Set size can be changed by
modifying the Authorize parameter WSquo.

The QXE Buffer does not fit in one segment. The QXE Buffer plus
the QXE Buffer Offset cannot fit within one segment (IBM PC
only).

The size of the QXE Buffer is over 64K words. Check that the
variable specifying the size of the QXE Buffer has been declared
as a long word (INTEGER*4 variable) (advanced FORTRAN
routines).

The size of fhe QXE Buffer is over 32K-1 words. The largest QXE
Buffer allowed is 32K-1 words {(advanced FORTRAN routines).

The process does not have either read or write access to the
Status Buffer. Check that the Status Buffer has been properly
declared.

The System does not have enough contiguous Real Time Page
Table Entries to double map the Status Buffer. The number of
Real Time Page Table Entfries can be changed by modifying the
Sysgen parameter REALTIME_SPTS.

The process does not have a big enough Working Set fo lock

down the Status Buffer. The Working Set size can be changed by
modifying the Authorize parameter WSquo.

71

133

134

135

136

137

138

139

140

141

201

The size of the Status Buffer is over 64K words. Check that the
variable specifying the size of the Status Buffer has been
declared as a long word (INTEGER*4 variable) (advanced
FORTRAN routines).

The process does not have either read or write access to the
Word Count Buffer. Check the address and the size of the Word
Count Buffer in the Header.

The System does not have enough contiguous Real Time Page
Table Eniries to double map the Word Count Buffer. The number
of Real Time Page Table Entries can be changed by modifying
the Sysgen parameter REALTIME SPTS.

The process does not have a big enough Working Set to lock
down the Word Count Buffer. The Working Set size can be
changed by modifying the Authorize parameter WSquo.

The WC Buffer does not fit in one segment. The WC Buffer plus
the WC Buffer Offset cannot fit within one segment (IBM PC
only).

The size of the WC Buffer is over 64K words. Check that the
variable specifying the size of the WC Buffer has been declared
as long word (INTEGER*4 variable) (advanced FORTRAN
routines).

The size of the WC Buffer is over 32K-1 words. The largest WC
Buffer allowed is 32K-1 words.

Unknown VMS error while trying to lock the Word Count Buffer
into memory.

Unknown VMS error while trying to lock the QXE Buffer into
memory.

An illegal command was found in CAMAC Control List

72

202

203

205

206

207

208

209

210

21

212

213

(advanced FORTRAN routines).

An Inline CAMAC read was specified. Only CAMAC write and
control functions can be specified in an Inline CAMAC Control
List command (advanced FORTRAN routines).

lllegal LAM type was specified, the legal command types are
zero through seven (advanced FORTRAN routines).

A block transfer CAMAC control function was specified. Only
CAMAC read and write functions can be specified for a block
transfer CAMAC Control List commands (advanced FORTRAN
routines).

The remainder of the Data Buffer is too small to hold the data for
the CAMAC block transfer (advanced FORTRAN routines).

An illegal CAMAC word size for the CAMAC device was
encountered (advanced FORTRAN routines).

Block transfer timeout. The CAMAC software driver has timed-
out because the CAMAC hardware has not responded.

Block transfer timeout. The CAMAC software driver has timed-
out because the CAMAC hardware has not responded.

Bad interrupt mode {advanced FORTRAN routines).
The QIO request was in some way cancelled.

Out of data error. The Data Buffer was not big enough to hold
or accept the data for the single naf.

Error in purging the dotc-bath.

Single transfer timeout. The CAMAC software driver has limed-
out because the CAMAC hardware has not responded.

73

214

215

216

217

218

219

220

221

222

223

224

301

302

303

304

Single transfer timeout. The CAMAC software driver has timed-
out because the CAMAC hardware has not responded.

Error in allocating a data-path.
Error in allocating mapping registers.
Error in purging the data-path.
Error in purging the data-path.

No PHYIO privileges, PHYIO privileges are needed for the
operation.

Error in purging the data-path.
Power failure error.

The CAMAC Control List could not hold the enter LAM
command.

The CAMAC driver could not allocate enough system memory
to book the LAM request.

Invalid CAMAC crate. The CAMAC crate is probably off-line.

Invalid crate number during a CAMAC block transfer operation.
The specified crate is not online.

A CAMAC N greater than 23 emor has occurred during a
CAMAC block transfer operation.

A CAMAC NO-Q error has occurred during a CAMAC block
transfer operation.

A CAMAC no-sync error has occurred during a CAMAC block

74

305

306

© 307

308

309

310

3N

312

313

314

315

316

fransfer operation.

A CAMAC NO-X error has occurred during a CAMAC block
transfer operation.

A CAMAC non-existent memory error has occurred during a
CAMAC block transfer operation.

A CAMAC STE-error has occurred during a CAMAC block
transfer operation.

A CAMAC time-out error has occurred during a CAMAC block
transfer operation.

An undefined CAMAC error has occured during @ CAMAC
block transfer operation.

Invalid crate number during CAMAC single transfer operation.
The specified crate is not online.

A CAMAC N greater than 23 emor has occurred during a
CAMAC NAF operation.

A CAMAC NO-Q error has occurred during a CAMAC NAF
operation.

A CAMAC no-sync error has occurred during a CAMAC single
transfer operation.

A CAMAC NO-X error has occurred during a CAMAC NAF
operation.

A CAMAC non-existent h'\emory error has occurred during a
CAMAC single transfer operation.

=

A CAMAC STE-error has occumred during a CAMAC single
transfer operation.

75

317

318

401

402

403

404

405

406

501

502

503

504

A CAMAC time-out error has occurred during a CAMAC NAF
operation.

An undefined CAMAC error has occurred during a CAMAC NAF
operation.

Access violation, either the 1/O status block cannot be written by
the caller, or the parameters for device-dependent function
codes are incorrectly specified.

The specified device is offline and not cumrently available for
use.

Insufficient system dynamic memory is available to complete
the service. There are probably no free IRPs, use SHOW
MEMORY to see the number of free IRPs.

An invalid channel number was specified.

The specified channel does not exist, was assigned from a more
privileged access mode, or the process does not have the
necessary privileges to perform the specified functions on the
device.

The QIO ermror is unknown to the CAMAC software.

Access violation, the device string cannot be read by the caller,
or the channel number cannot be written by the caller.

The CAMAC device is allocated to another process.
lllegal device name. No device name was specified, the
logical name translation failed, or the device string contains

invalid characters.

The device name string has a length of 0 or has more than 63
characters.

76

505

506

507

601

602

603

701

702

703

704

705

No 1/0 channel is available for assignment.

The specified CAMAC device does not exist. Check the device
string for misspellings or a missing colon and check that the
device driver has been loaded.

The process tried to assign a CAMAC device on a remote node.
CAMAC operations cannot be performed over a network.

The CAOPEN error is unknown to the CAMAC software.
An invalid channel number was specified.

The specified channel is not assigned or was assighed from more
privileged mode.

The CACLOS error is unknown to the CAMAC software.

An invalid CAMAC subaddress (A) was found. The CAMAC
subaddress was either less than 0 or greater than 15 (A <O or A
> 15).

Invalid mode byte. The mode byte for the Advance Fortran
routines is invalid (advanced FORTRAN routines).

An invalid CAMAC block transfer type was found. The legal
block transfer types are QSTP, QIGN, QRPT, and QSCN with
comresponding values of 0, 8, 16, and 24 respectively.

An invalid CAMAC function code (F) was found. The CAMAC
function code was either less than 0 or greater than 31 (F<0 or
F>31).

An invalid CAMAC Crate controller function was found. The

valid CAMAC crate controller functions are INIT, CLEAR, SETINH,
CLRINH, and ONLINE with comresponding values of 0, 1, 2, 3, and

77

706

707

708

709

710

711

712

713

714

4 respectively.

An invalid CAMAC slot number (N) was found. The slot number
was either less than 1 or greater than 30 (N <1 or N > 30).

Invalid LAM type (advanced FORTRAN routines).

Invalid priority (advanced FORTRAN routines).

A CAMAC block transfer control operation was specified which

is invalid. Only CAMAC Read or Write block transfers are

allowed. The function code (F) for the block transfer was either

between 8 and 15 inclusive or between 24 and 31 inclusive
(8<F<150r24 <F<31).

In-line read NAF (advanced FORTRAN routines).

Data buffer too small (advanced FORTRAN routines).

Command List too small (advanced FORTRAN routines).

A CAMAC block transfer with a block size of zero was found. A
CAMAC block transfer must have a size of at least one word.

A CAMAC block transfer with a block size of over 32K-1 words

was found. A CAMAC block transfer cannot have a block size
greater than 32K-1 words (16 bits).

78

Appendix B

CAUSER Fortran Parameter Definitions

CAUSER.INC is a Fortran Include file which contains parameter
definitions for various arguments such as mode and function, the offsets
into arrays such as StatusArray and Crate-Status, and INTEGER*4 type
declarations for the Fortran Function entry points. These declarations
are summarized in this appendix.

CAUSER contains "error” parameters, errnnn, where "nnn" represents the
returned emror codes. These codes are listed in Appendix A. For
example, err704 is an illegal CAMAC Function Code.

By including this file, you can make a program more readable by
symbolically refemring to various CAMAC parameters and functions; this
is illustrated in the examples at the end of the chapter on FORTRAN.

Function Subroutine Declarations

Each Fortran Function Subroutine is declared as type INTEGER*4, since
it returns an integer*4 error code that may be tested.

Integer*4 CAOPEN
Integer*4 CACLOS
Integer*4 CAMI16
Integer*4 CAM24
integer*4 CAMI16d

79

Integer*4 CAM24d
Integer*4 CAB16
Integer*4 CAB24
Integer*4 CABlée
Integer*4 CAB24e
Integer*4 CACTRL
Integer*4 CASTAT
Integer*4 CCSTAT

Advanced Function Subroutine Declarations

Each Advanced Fortran Function Subroutine is declared as type
INTEGER*4, since it returns an integer®4 emror code that may be tested.

Integer*4 CABLK
Integer*4 CAEBLK
Integer*4 CAEXEW
integer*4 CAHALT
Integer*4 CAINAF
Integer*4 CAINIT
Integer*4 CALIST
integer*4 CANAF
Integer*4 CANAFP

Crate Controller Functions (func)

The fbllowing function codes are defined as parameters for the func
argument to CACTRL.

Func Value Description

INIT 00 Initialize Crate ()
CLEAR 01 Clear Crate (C)
SETINH 02 Set Inhibit (1)
CLRINH 03 Clear Inhibit {l)
ONLINE 04 Set On-line

80

Block Transfer Mode (mode)

The mode argument in the block transfer routines determines the type
of fransfer. The following INTEGER*2 mode parameters are defined.

Mode Value Description
QSTP 00 Q-Stop mode

- QIGN 08 Q-Ignore mode
QRPT 16 Q-Repeat mode
QSCN 24 Q-Scan mode

Enhanced Block Transfer Mode (mode)

The mode argument in the enhanced block fransfer routines
determines the type of transfer. The following INTEGER*2 mode
parameters are defined.

Mode Valve Description

EQSTP 00 Enhanced Q-Stop mode

EQIGN 08 Enhanced Q-Ignore mode

LSQRPT 16 Enhanced Q-Repeat NAF List

LSQIGN 24 Enhanced Q-lgnore NAF List
Word Size and Abort Mode

The following Integer*4 mode parameters define the word size and
abort condition for the Advanced Fortran Routines.

Mode Value Description

ABORT 01 Disable abort on error
WTS16 02 16-bit word size
WTS24 00 24-bit word size

81

StatusArray Offsets

The following INTEGER*4 parameters are defined as offsets into the
Retumn Status Aray StatAmray for the simple Fortran Calls.

Offset Value Description

" ERR 1 Error code
CSR 2 Hardware Control Status Register
ERS 3 Hardware Error Status Register
LCSR 4 Not used
QXSUM S Q, X Sum
TC 6 Transaction Count

Status Buffer Offsets

The following INTEGER*4 parameters are defined as offsets into the
Return Status Buffer STATUS for the Advanced Fortran Calls.

Offset Value Description

STAT 1 Error code

STACSR 2 Hardware Control Status Register
STAERS 3 Hardware Emror Status Register
STALCS 4 Not used

STASUM 5 NO-X and NO-Q sums

STACNT 6 Number of words not transferred
STALIS 7 CAMAC Control List Pointer
STADAT 8 Data Buffer Pointer

STAWC 9 Number of Word Count Errors
STAQXE 10 Number of QXE Errors

Crate Confroller Status Array Offsets

The following INTEGER*4 parameters are defined as offsets into the

82

Crate Controller Status Array CrateStat.

Offset Value Description

INHIBIT 1 Inhibit status offset

LSUM 2 L-Sum offset

LAMREG 3 LAM Register offset

CSREG 4 Crate Status Register offset

CAMAC Control List Constants

The following INTEGER*4 parameters define the size of the Header and
Return Status Buffer, the record size to the Word Count Buffer and QXE
Buffer, and the version number of the Fortran Source Code.

Constant Value Description

HEDMAX 18 Size of the Header

VERNUM 100 Version Number of the software

STAMAX 10 Size of the Return Status Buffer

WCREC 4 Record size of the Word Count
Buffer

QXEREC 3 Record size of the QXE Buffer

Word Count Record Offsets

The following INTEGER*4 parameters are defined as offsets into each
record of the Word Count Buffer For additional information on the Word
Count Buffer.

Offset Value Description

WCERS 1 Hardware Emror Status Register
WCCNT 2 Number of words not transferred
WCLIS 3 CAMAC Control List Pointer
WCDAT 4 Data Buffer Pointer

83

QXE Record Offsets

The following INTEGER*4 parameters are defined as offsets into each
record of the QXE Buffer For additional information on the QXE Buffer.

Qffset Value

QXEERS]

QXELIS 2

QXEDAT 3
Header Offsets

Description
Hardware Error Status Register

CAMAC Control List Pointer
Data Buffer Pointer

The following INTEGER*4 parameters are defined as offsets into the
Header. For additional information on the Header, see Table B.1.

Table B.1: Header Offsets

Qffset

HEDSIZ
VERS
FUNC
LISSIZ

LISLEN
LISADR

DATSIZ
DATLEN
DATADR
STASIZ
STAADR

— = 0 00 N o~ (4] W N -

- QO

Description

Header buffer size

Version Number

Read or Write function
Maximum CAMAC Control
List size

Actual CAMAC Control List
size

Address of CAMAC Control
List

Maximum Data Buffer size
Actual Data Buffer size
Address of Data Buffer
Return Status Buffer Size
Address of Return Status
Buffer

WCSIZ 12 Size of Word Count Buffer
WCADR 13 Address of Word Count
Buffer

QXESIZ 14 Size of QXE Buffer
QXEADR 15 Address of QXE Buffer

85

Appendix C

Command List Protocol

Introduction to the Command List Protocol

The CAMAC Standard achieves great flexibility through use of a simple
addressing and function code scheme, (i.e., Crate, Station number,
Subaddress, Function code (CNAF)). It is further enhanced by a number of
"Block Mode" transfer schemes that permit either repeated operations to the
same address or to increment the address. The block transfer modes generally
offer considerably greater throughput at the cost of decreased flexibility.

In a real application environment, various schemes have been used to
overcome the restrictions imposed by block mode transfers but still retain the
flexibility of CAMAC. This is accomplished by providing a command list to
control CAMAC activity. The simplest is just a list of CNAF's to be executed.
While this is a significant step forward, it typically suffers from much lower
throughput than CAMAC is capable due to software overhead.

The implementation described in this appendix attempts to retain the
advantages of block mode as well as provide a very flexible structure which
will enable the user to achieve speeds approaching those imposed by the
CAMAC hardware standard in a wide range of applications. It is further
envisioned that the sofiware will implement a super-set of the underlying
hardware functionality. The software will emulate hardware functionality
whenever hardware is subset.

86

Command List Format

The Command List Protocol (CLP) structure provides for single NAF
CAMAC operations as well as the standard CAMAC block transfer
operations. The control list structure provides for 24 and 16 bit transfers.
The 24-bit transfers are implemented as 24-bits in the lower order bits of a
~ 32-bit word. In general, a CAMAC Control List (CCL) is used to define a
sequence of CAMAC operations to be performed, including single action
NAF's, CAMAC block transfers, as well as various control commands.

The Command List Protocol is illustrated below:

Single CAMAC Transfer:
31 16 8 0

NAF CRATE 000xx0xx

Single CAMAC Transfer Inline Write Data:

31 16 8 0
NAF CRATE 01 IxoxOxx
Inline Write Data

Standard CAMAC Block Transfer:

31 16 8 0
NAF CRATE 001xx0xx
Word Count

87

P ——

Enhanced Serial Highway Block Transfer:

31 16 8 0
NAF CRATE 010xx0xx
Word Count
End of Control List (HALT):
31 16 8 0
0 0 10000000

CAMAC control lists should consist of either read and control (FO-15,
F24-31) or write and control (F8-31) operation. The only exception is that
for "control" purposes, it is permitted to imbed a write operation with in-line
data in either a read or write CAMAC control list.

When executing a CAMAC block transfer, if the block is truncated (i.e.,
CAMAC Block Count is not incremented to zero), then the hardware
interrupts the processor so software can read the actual number of transfers
that have occurred during the current CAMAC block transfer. This
information is stored in the WC buffer.

CLP Operation Code OPR

The protocol defines operation (OPR) codes with values between 0 and 255.
The structure of the OPR code is illustrated below. The OPR code is used by
the software driver to determine the type of operation to be performed. When
the List Processor hardware option is used, it suspends processing and
interrupts the host whenever it encounters an OPR code which it cannot
execute (an exception condition). When this occurs, the hardware provides
control registers to allow the software driver to determine the reason for the
exception. The software driver can choose to emulate the instruction if it
can, and optionally restart the hardware list processor following the OPR code

88

which caused the exception.

The OPR byte is shown below:
CM T-Mode Q-Mode W-SIZE AD

AD: 00 Abort Disable.
0 Abort on ERR, NO-X, or TPE.
1 Do not abort on ERR, NO-X or TPE.

W-Size: 02-01 Word Size.
00 24-bit transfer
01 16-bit transfer
10 08-bit transfer
11 not used

Q-Mode: 04-03 Transfer type.

00 Q-Stop
01 Q-Ignore
10 Q-Repeat
11 Q-Scan
T-mode: 06-05 Transfer mode.
00 Single CAMAC transfer
01 Normal CAMAC block transfer
10 Fast CAMAC block transfer
11 Single inline CAMAC transfer
CM: 07 Command mode.
0 CAMAC transfer.

1 - NON-CAMAC command, Halt, LAM

89

