Model 3620

24-channel Counter

INSTRUCTION MANUAL

March, 1987

Cl978, 1979, 1980, 1986, 1987 Copyright by KineticSystems Corporation Lockport, Illinois All rights reserved

*** SPECIAL OPTION ***

Model 3620-S001

24-channel Counter

October, 1989

(C) 1978, 1979, 1980, 1986, 1987, 1989
Copyright by
KineticSystems Corporation
Lockport, Illinois
All rights reserved

Page 1S of 2S

*** SPECIAL OPTION ***

The model 3620-S001 is the same as the 3620-A1D except it is modified to accept TTL signals. The input circuitry is isolated from the module. The power for the TTL level input signal must be provided by signal drive.

MLH:rem(WP)

October 27, 1989

TABLE OF CONTENTS

<u>Item</u>	<u>Page</u>
Features and Applications	1
General Description	1
Input Options	1
Reading Data Count	2
Function Codes	2
Simplified Block Diagram	2
Ordering Information	2
Input Level Considerations	3
Contact Bounce Filtering	3
Maximum Input Rate	4
Input FilteringSelection for a Group	
of Channels	5
Front Panel LEDs	5
Socket/Wire List	6
Figure 2 Location of User Options	7
Warranty	8
Schematic Drawing #022115-D-1516	nsert

KineticSystems Corporation

Standardized Data Acquisition and Control Systems

3620

24-channel Counter

©1978, 1987 (Rev. Mar. 87)

FEATURES

- 24 independent counters
- Maximum count, each counter, 16,777,215 (24 bits)
- LAM on overflow
- Many input options available: 12, 24, 48 VDC, unbalanced contact monitor, optically isolated; or TTL nonisolated
- · Contact bounce filter on each input
- · Count rate, DC to 200 hertz
- On-board microprocessor

APPLICATIONS

- · General-purpose event counting
- Process monitoring

GENERAL DESCRIPTION

The Model 3620 is a single-width CAMAC module containing 24 independent 24-bit counters and associated input circuits. This module is specifically designed for low-speed counting applications (up to 200 hertz). Since high-speed counters such as our 3610, 3615, and 3640 have a very high maximum counting rate (100 megahertz for the 3615), they are not suitable for counting events where the counting source is a relay contact (with associated contact bounce) or has a slow rise time.

An on-board microprocessor scans the input channels and increments the count in RAM memory when an input has changed from its Zero to One state. Input counting rates to 200 hertz can be accommodated. A 24-bit word of data stored for each input channel provides for an accumulated count from 0 to 16,777,215. The LAM is set when an overflow is detected in any counter.

All I/O connections are made via the 50-contact ribbon connector on the front panel.

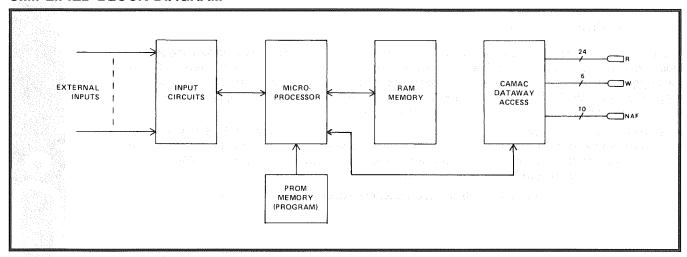
INPUT OPTIONS

The 3620 is available with the following input options:

- Isolated. Each circuit is a floating pair that is isolated from ground with a voltage breakdown
 of greater than 500 volts. LED/phototransistor optical isolators are used. Four isolated input
 options are available: 12 VDC, 24 VDC, and 48 VDC (with switching thresholds approximately
 one-half of the nominal voltage), or an unbalanced contact monitor.
- 2. Nonisolated. Each circuit is single-ended with a ground return. This signal level option operates at TTL level.

READING DATA COUNT

The count for any channel is read by setting the channel address to that input channel $[F(16)\cdot A(1)]$ and then reading the register $[F(0)\cdot A(0)]$. Data is available several microseconds after the address is changed. A Q=0 response will be given if data is not yet fetched. For most program transfer sequences, the data will be available before the Read command is executed. To read a block of channels, the address of the first channel is written, followed by Read commands. The address increments after each valid command.



FUNCTION CODES

Comma	nd	Q	Action
F(0)·A(0)	RD1	DAV	Reads the 24-bit data register containing the count for the current channel address, then increments the channel address. (See Note 1.)
F(0)·A(1)	RD1	1	Reads the current channel address.
F(8)·A(15)	TLM	LR	Tests whether the LAM request is present (See Note 1.)
F(9)·A(0)	CL1	1	Clears Read Data registers for all channels.
F(9) A(1)	CL1	1	Clears Read Data registers for current channel address.
F(10)·A(0)	CLM	1	Clears the LAM Status register.
F(16)·A(1)	WT2	1	Writes the channel address, then causes the Read Data register to be loaded with the current count for that channel.
F(24) A(0)	DIS	1	Disables the LAM request.
F(26)·A(0)	ENB	1	Enables the LAM request.
F(27)·A(0)	TST	DAV	Tests whether Read data is available.
Z	CZ	0	Clears all data registers and the Address register, resets the CPU.

Notes: 1. Overflowed channel can be determined by setting address Zero and reading the data register. This is the LAM Status register.

SIMPLIFIED BLOCK DIAGRAM

POWER REQUIREMENTS

 Model 3620-A1A
 + 6 volts
 1700 mA
 Model 3620-A1B, A1C, A1D, A1E
 + 6 volts
 + 6 volts
 - 1700 mA

 - 6 volts
 - 25 mA
 - 6 volts
 - 25 mA

 + 24 volts
 - 50 mA
 + 24 volts
 - 45 mA

Weight: .70 kg. (1 lb. 8 oz.)

ORDERING INFORMATION

Model 3620-A1A — 24 Channel Counter — Unbalanced Contact Input
Model 3620-A1B — 24 Channel Counter — 48 VDC
Model 3620-A1C — 24 Channel Counter — 24 VDC
Model 3620-A1D — 24 Channel Counter — 12 VDC
Model 3620-A1E — 24 Channel Counter — TTL

Accessories — Model 5950-Z1A Mating Connector

Accessories — Model 5950-Z1A Mating Connector

Model 1850-A1D Rack Termination Panel

^{2.} X = 1 for all valid addressed commands.

INPUT LEVEL CONSIDERATIONS

1. Isolated Options

For modules with these options, each input is connected through a series resistor to the LED input of an optional isolator. External voltage is required for a "1" input. See the schematic drawing for details. The operating characteristics for each such option is as follows:

Option	Nominal Voltage	Current at Nominal Voltage	Typical Just- Operate Voltage	Absolute Maximum Continuous Voltage
3620-A1B	48 VDC	4.5 mA	24 VDC	70 VDC
3620-A1C	24 VDC	5.0 mA	12 VDC	40 VDC
3620-A1D	12 VDC	9.0 mA	6 VDC	22 VDC

These inputs are fully protected in the reverse direction, and the same maximum voltage limits apply. The input will be indicated as a "0" with no voltage or reverse voltage.

2. Unbalanced Contact Option

This option uses the same basic circuit as the 3620-AlC except that one side of the optical isolator input is internally connected to the +24 volt source, and the other side is connected to the POSITIVE input contact. The NEGATIVE contact is connected to module ground. Therefore, the open circuit voltage is 24 volts, the closed current is 5 mA and a contact closure (0 ohm to approximately 3K ohm) will indicate a "1".

This option is often preferred over the TTL option for contacts because of the higher voltage to break down "contact film" and the higher "contact wetting" current. Open contacts can become intermittant if used "dry" (very low voltage and current).

3. TTL Option

This option operates at normal TTL levels. A "1" is indicated when an input (POSITIVE contact) goes LOW. Internal pull-up resistors on the module hold the inputs normally HIGH. The input current (when at 0 volt) is 2.25 mA. The inputs are fully zener diode-protected. Absolute maximum continuous positive voltage is +15 volts; negative continuous maximum is -10 volts.

CONTACT BOUNCE FILTERING

Since this module may often be used with contacts and that the input signal (extra transitions) will "bounce" when opening or closing, it is very important that this input signal must be filtered to prevent "multiple" counts.

If a long time constant is used to cover contacts with long bounce periods (100 milliseconds, for example), the counting rate is severely limited. If the input circuit requires that a contact be closed for at least 100 milliseconds and open for at least that period, the counting rate is limited (for a 50% duty cycle

signal) to 1/(200 milliseconds)=5 Hz. For other than 50% duty cycle, the rate is even slower.

For additional versatility, we have included digital bounce-eliminator IC's (one Motorola MC14490 hex eliminator per six channels). Each input incorporates the CMOS contact bounce eliminator, which is basically a digital integrator. The bounce eliminator is composed of a 4.5-bit register (the integrator) and logic to compare the input with the contents of the shift register. The shift register requires a clock signal in order to shift the input signal into each shift register location.

The only requirement on the clock frequency in order to obtain a bounce-free output signal is that four clock periods do not occur while the input is in a false state. Referring to Figure 1, a false state is seen to occur three times at the beginning of the input signal. The input signal goes low three times before it finally settles down to a valid low state. The first three low pulses are referred to as false states.

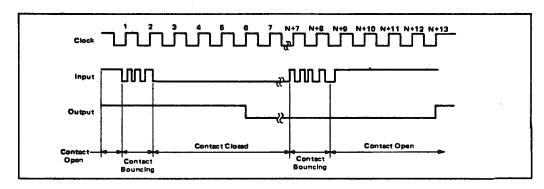


Figure 1 -- Timing Diagram

The bounce eliminators are strapped at the factory for operation from a common on-board oscillator. This oscillator has range from approximately 0.3 KHz to 4.5 KHz. Since the input must be in one state for four clock periods to be counted as a change, the maximum "false open or close" time to be integrated and ignored is:

$$BFT_{max} = \frac{4}{F}$$
 with bounce filter time in milliseconds and frequency in kilohertz

This makes the range of maximum bounce filter time as 0.9 milliseconds to 13.3 milliseconds (4.5 to .3 KHz). The potentiometer is factory-set to 1 KHz. (Four milliseconds, maximum bounce time.) If very long "bounce time" is required, the master oscillator capacitor can be changed. See Figure 2.

MAXIMUM INPUT RATE

The maximum count speed (50% duty cycle) is 200 Hertz. This is due to software latency on the board. This means that the contact must be closed for at least $2\frac{1}{2}$ milliseconds and open for at least $2\frac{1}{2}$ milliseconds to be sure that it will be counted. This is a worst-case limit with all channels counting. As the other channels are "less busy", the software latency is less, and a higher counting rate would be accepted. The maximum count speed can also be limited by the "bounce eliminator" time. The open and close periods of the input must each be longer than the bounce time set in the module, otherwise counts will be missed.

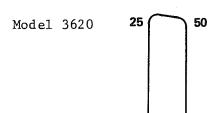
INPUT FILTERING--SELECTION FOR A GROUP OF CHANNELS

The master oscillator for the contact bounce circuits can normally be set to cover the longest bounce period of any input. However, if the module is receiving signals of various types (some reasonably fast signals with little bounce and some very slow signals with long bounce times) it is possible to independently select bounce filter time in groups of six inputs. This uses the internal clock on the bounce eliminator IC's. Strapping is as shown in Figure 2. An external capacitor is required for each group of six inputs. The typical clock frequency is:

$$f = \frac{1875}{C_{ext}}$$
 when f is in kilohertz and C_{ext} is in picofarads

Also, as before, the bounce filter time is BFT = $\frac{4}{f}$, where BFT is in milliseconds and f is in kilohertz. This makes the typical filter time:

$$BFT = \frac{4C_{ext}}{1875}$$


We have found that the initial frequency, when using the on-chip oscillator, can vary widely from chip to chip (5 to 1). Therefore, frequency should be measured at pin 9 of the MC14490 IC to determine if the desired frequency is present.

FRONT PANEL LEDS

N indicates that the module is currently being addressed.

L indicates that the L-signal is true (LAM status bit set and LAM request enabled).

SCAN indicates that the on-board microprocessor is properly scanning channels. The scan is started when the module is initialized.

Pin/Wire List

I/O Connector - Ampheno1 57-20500 Mating Connector - Ampheno1 57-10500

50 PIN RIBBON CONN.

FACE	VIEW

<u>PIN NO</u>	. CHANNEL	POLARITY	
25 _	N/C		
24 .	24	Positive	
23 _	23		
22 _	22		
21 _	21		
20 _	20		
19 _	19		
18 _	18		
17 _	17		
16 _	16		
15 _	15		
14 _	14		
13 _	13		
12 _	12		
11 _	11		
10 _	10		
9 _	9		
8 _	8		
7 _	7		
6 _	6		
5	5		
4 _	4		
3 _	3		
2 _	2		
1 _	1		

PIN NO	CHANNEL	POLARITY	
50	N/C		
49	24	Negative	
48 .	23		
47	22		
46 .	21		
45	20		
44	19		
43	18		
42	17	·	_
41 .	16		
40 .	15		
39 .	14		
38 .	13		
37 .	12		
36 .	11		
35 .	10		_
34 .	9		_
33 .	8		_
32 .	7		
31	6		
30 _	5		
29 .	4		
28 .	3		
27 _	2		
26 .	1		_

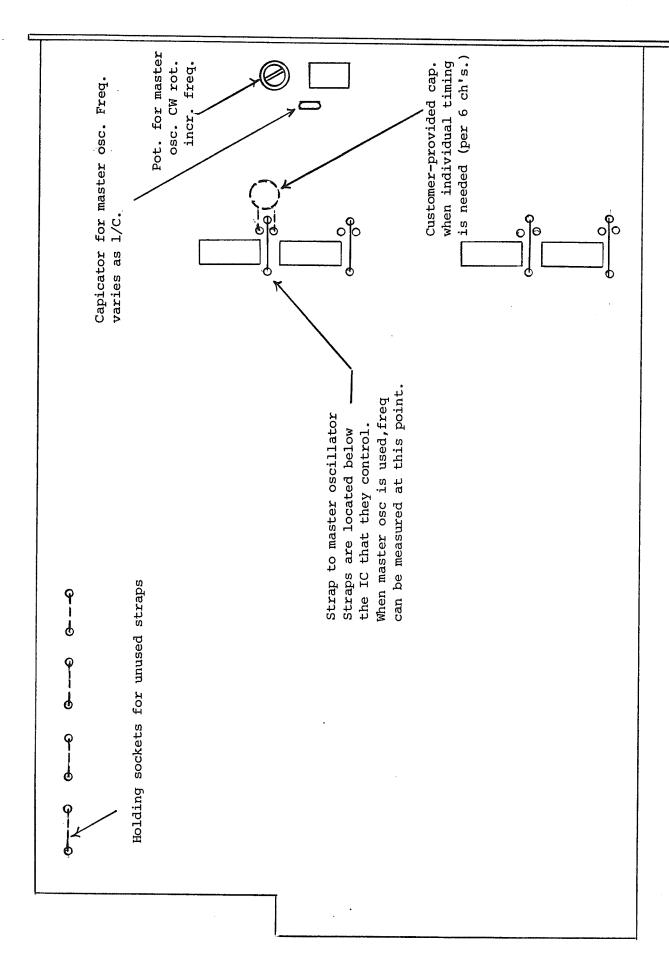


Figure 2. Location of user options. Model 3620

WARRANTY

KineticSystems Company, LLC warrants its standard hardware products to be free of defects in workmanship and materials for a period of one year from the date of shipment to the original end user. Software products manufactured by KineticSystems are warranted to conform to the Software Product Description (SPD) applicable at the time of purchase for a period of ninety days from the date of shipment to the original end user. Products purchased for resale by KineticSystems carry the original equipment manufacturer's warranty.

KineticSystems will, at its option, either repair or replace products that prove to be defective in materials or workmanship during the warranty period.

Transportation charges for shipping products to KineticSystems shall be prepaid by the purchaser, while charges for returning the repaired warranty product to the purchaser, if located in the United States, shall be paid by KineticSystems. Return shipment will be made by UPS, where available, unless the purchaser requests a premium method of shipment at their expense. The selected carrier shall not be construed to be the agent of KineticSystems, nor will KineticSystems assume any liability in connection with the services provided by the carrier.

The product warranty may vary outside the United States and does not include shipping, customs clearance, or any other charges. Consult your local authorized representative or reseller for more information regarding specific warranty coverage and shipping details.

PRODUCT SPECIFICATIONS AND DESCRIPTIONS IN THIS DOCUMENT SUBJECT TO CHANGE WITHOUT NOTICE.

KINETICSYSTEMS SPECIFICALLY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR ANY OTHER WARRANTY EITHER EXPRESSED OR IMPLIED, EXCEPT AS IS EXPRESSLY SET FORTH HEREIN. PRODUCT FAILURES CREATED BY UNAUTHORIZED MODIFICATIONS, PRODUCT MISUSE, OR IMPROPER INSTALLATION ARE NOT COVERED BY THIS WARRANTY.

THE WARRANTIES PROVIIDED HEREIN ARE THE PURCHASER'S SOLE AND EXCLUSIVE REMEDIES ON ANY CLAIM OF ANY KIND FOR ANY LOSS OR DAMAGE ARISING OUT OF, CONNECTED WITH, OR RESULTING FROM THE USE, PERFORMANCE OR BREACH THEREOF, OR FROM THE DESIGN, MANUFACTURE, SALE, DELIVERY, RESALE, OR REPAIR OR USE OF ANY PRODUCTS COVERED OR FURNISHED BY KINETICSYSTEMS INCLUDING BUT NOT LIMITED TO ANY CLAIM OF NEGLIGENCE OR OTHER TORTIOUS BREACH, SHALL BE THE REPAIR OR REPLACEMENT, FOB FACTORY, AS KINETICSYSTEMS MAY ELECT, OF THE PRODUCT OR PART THEREOF GIVING RISE TO SUCH CLAIM, EXCEPT THAT KINETICSYSTEMS' LIABILITY FOR SUCH REPAIR OR REPLACEMENT SHALL IN NO EVENT EXCEED THE CONTRACT PRICE ALLOCABLE TO THE PRODUCTS OR PART THEROF WHICH GIVES RISE TO THE CLAIM. IN NO EVENT SHALL KINETICSYSTEMS BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOSS OF PROFITS.

Products will not be accepted for credit or exchange without the prior written approval of KineticSystems. If it is necessary to return a product for repair, replacement or exchange, a Return Authorization (RA) Number must first be obtained from the Repair Service Center prior to shipping the product to KineticSystems. The following steps should be taken before returning any product:

- 1. Contact KineticSystems and discuss the problem with a Technical Service Engineer.
- 2. Obtain a Return Authorization (RA) Number.
- 3. Initiate a purchase order for the estimated repair charge if the product is out of warranty.
- 4. Include a description of the problem and your technical contact person with the product.
- 5. Ship the product prepaid with the RA Number marked on the outside of the package to:

KineticSystems Company, LLC Repair Service Center 900 North State Street Lockport, IL 60441

Telephone: (815) 838-0005 Facsimile: (815) 838-4424 Email: tech-serv@kscorp.com