964i High Voltage Switching System

The Perfect Solution for Automated Multi-Conductor, Multi-Point Hipot Testing

You have a job to do - you have to hipot test a 16 conductor medical cable at 8500V to ensure that each conductor is properly isolated from every other conductor. You have two choices, you can try to do it manually or you can use the Vitrek 964i to automatically route the HV and return signals to the proper test points.

The manual method is extremely problematic. Slow, error prone, labor intensive, operator hazardous - don't even think about recording the test results. The 964i on the other hand, is purpose built to fully automate all of you HV switching needs. You chose the 964i, partner it with a Vitrek 95X Series Industrial Strength Hipot Tester and QuickTest Pro test automation software. The company wins the Malcolm Baldridge National Quality Award, you get a promotion and that corner office you've always wanted. Choose carefully.

The 964i HV Switching System is built precisely to meet Your HV Switching requirements

The 964i holds up to 8, eight channel HV switching cards. That's up to 64 test points in a single mainframe - multiple units can be combined to increase capacity

Whether you have to hipot an 8 pin connector, a 64 conductor cable or an entire tray of SMD capacitors - the 964i has the capacity to automatically route test points to your tester, so you don't have to. The 964i is easily configured to handle your test specifications. First, select from 4 different voltage ratings - 3KV, 7KV, 10KV and 15KV. Next, decide on how many cards you need. And finally - choose the input, either + (HV bus) or – (return bus) for each card. It's that simple. If you have any questions, contact a Vitrek application specialists for assistance in configuring your ideal switching solution.

High voltage switching doesn't get any easier

Whether you have to hipot an 8 pin connector, a 64 conductor cable The 964i is simple to set up. Standard front inputs connect directly to your Hipot/Continuity Tester and up to 60 rear panel terminals connect with your test fixture or DUT.

Up to four 964i's can be controlled directly by a single Vitrek 95X or V7X Series Hipot Tester or up to 10 via PC through the 964i's built-in RS232 (serial) port or available GPIB interface. The 964i's LCD display confirms system status and switch activation at a glance.

Try the 964i HV Scanner, you will never Switch again

The Vitrek 964i Automated Switching System routes high voltage test signals and return signals to any desired test points. This unique capability gives you control over each individual relay, unlike typical cable testers which restrict you to a fixed pattern. With available mux cards, you can also access the matrix with other equipment such an LCR meter or DMM. The result is a highly repeatable, rapid switching test system with no operator intervention and fully automated data acquisition. With voltage switching capability up to 15,000 volts or current switching as high as 40 amps - the 964i can handle just about any test requirement that comes along. Give it a try, you will never switch back to manual testing again.

Features & Benefits

- High Voltage Ratings to 3KV, 7KV, 10KV or 15KV
- High Current Ratings to 40 Amps
- Reduces hazardous operator exposure to high voltage
- Improves test quality, consistency and repeatability
- Enhances end product quality and reliability
- Up to 64 channels in a single compact unit
- Vitrek Hipot Tester control ports and RS232 interfaces standard
- GPIB optionally available
- May be controlled directly by Vitrek Hipot Tester
- Available QuickTest[™] graphical software with full data aquisition
- CE mark certified to EN 61010
- Made in the U.S.A.

The 964i rear panel accomodates up to 60 output terminals. Unit shown above with 16 + terminals (HV(and 16 - terminals (return(. The 964i ships with mating connectors for all +/-HV terminals 7KV and higher. Custom length HV lead sets are optionally available.

964i HV Switching System Specifications

HV Series Relay Boards

Max Voltage (Between any two connections or ground)

HV7: 7KVDĆ 5KVAC, HV10: 10KVDC 7KVAC,

HV15: 15KVDC 10KVAC Frequency: <500Hz.

Carrying Current: <1Arms continuous,

<2Arms for <1 second.

Switching Power: HV7 and HV10: <50W (resistive). HV15: <10W (resistive). Switching Time: <5ms (including

bounce).

Expected Life: <1mA, <100V resistive 500,000 operations. At max switching

power: 1,000 operations

Contact Resistance: At terminals, <50% expected life operations (add 0.1Ω for <100% life)

 $<0.25\Omega$ (uncompensated), $<0.1\Omega$

(compensated), $<\pm 0.1\Omega$ difference between

lowest and highest.

Leakage Resistance: Any individual connection to ground: $>500G\Omega$ at <30C.

Common connection

to ground: >100G Ω at <30C. Between any two connections: >1T Ω at <30C. Leakage Capacitance: Any individual connection to ground: 15pF (typical).

Common connection to

ground: 50pF (typical). Between any two

connections: 5pF (typical). Thermal EMF: <1mV.

Coil Power: Holding closed: 0.3W (typical), Closing: 1.25W for 5ms (typical) Accuracy Specifications: Valid one year ± 5C

from Cal temperature

LV Series Relay Boards

Max Voltage (Between any two connections) 3KVDC 2KVAC (between any connection and ground)

5KVDC 3KVAC Frequency: <500Hz.

Carrying Current: <1Arms continuous,

<8Arms for <1 second.

continued

LV Series Relay Boards (continued)

Switching Power: <500W (resistive) Switching Time: <10ms (including

bounce).

Expected Life: <1mA, <100V resistive 2,000,000 operations. At max switching

power: 100,000

Contact Resistance: At terminals, <50% expected life operations (add 0.05Ω for

<100% life)

 $<0.175\Omega$ (uncompensated), $<0.05\Omega$ (compensated), $<\pm0.075\Omega$ difference between

lowest and highest.

Leakage Resistance: Any individual connection to ground: $>1G\Omega$ at <30C. Common

connection

to ground: >200M Ω at <30C. Between any two connections: >1G Ω at <30C. Leakage Capacitance: Any individual connection to ground: 15pF (typical). Common

connection to

ground: 50pF (typical). Between any two connections: 10pF (typical).

Thermal EMF: <200uV.

Coil Power: Holding closed: 0.12W (typical), Closing: .5W for 5ms (typical)

HC Series Relay Boards

High Current Relay Specifications -

Max Voltage: Between any two connections: 1.5KVdc/1KVrms.

Any connection to ground: 1.5KVdc/1KVrms.

Frequency: <500Hz.

Carrying Current: <40Arms continuous, <60Arms for <1 second.

Switching Power: <500W (resistive).

Min Switching Current:>0.5Arms. Switching Time: <20ms (including bounce).

Expected Life: 1 to 10Arms resistive 500,000 operations. At max power: 10,000

operations.

Contact Resistance: $<0.025\Omega$ (at terminals, <100% expected life operations). Leakage Resistance: Any individual connection to ground: $>20M\Omega$ at <30C.

Common connection to

ground: $>5M\Omega$ at <30C. Between any two connections: $>20M\Omega$ at <30C. **Coil Power:** Holding closed: 0.6W (typical), Closing: 2.5W for 25ms (typical)

Low Current Relay Specifications -

Voltage: Between any two connections: 1.5KVdc/1KVrms. Any connection to ground:

1.5KVdc/1KVrms. Frequency: <500Hz.

Carrying Current: <1Arms continuous, <2Arms for <1 second.

Switching Power: <30W (resistive).
Switching Time: <5ms (including bounce).

Expected Life: <1mA, <100Vdc 5,000,000 operations. At max power: 100,000

operations.

Contact Resistance: At terminals, <50% expected life operations (add 0.05Ω for

<100% life), <0.15Ω (uncompensated), <0.05Ω (compensated).

continued

964i HV Switching System

HC Series Relay Boards

Leakage Resistance; Any individual connection to ground: $>100G\Omega$ at <30C.

Common connection to

ground: $>10G\Omega$ at <30C. Between any two

connections: $>100G\Omega$ at <30C. Leakage Capacitance: Any individual connection to ground: 15pF (typical).

Common connection to

ground: 50pF (typical). Between any two

connections: 10pF (typical) Thermal EMF: <100uV.

Coil Power: Holding closed: 0.06W (typical),

Closing: 0.25W for 5ms (typical)

General Specifications

Relay Card Capacity: Eight cards Front input Terminals: 5 inputs

terminals

Rear Panel Terminals: 60 terminals Interfaces: RS232 and VICL (Vitrek Hipot Control) standard, GPIB optional Nominal Dimensions: 89mmH x 432mmW x

457mmD (3.5" x 17" x 18")

Nominal Weight: Mainframe only 3.5Kg (8lb) net, 7Kg (16lb) shipping. Add 0.75Kg

(1.5lb) per relay card

Storage Environment: -20 to 75C (non-

condensing)

Operating Environment: 0 to 50C, <85% RH (non-condensing), Pollution Degree 2 Operating Altitude: 0 to 10000ft ASL Line Power: 105-265Vrms, 45 to 450Hz, Category II using provided external power

module

Ordering Information

964i	High Voltage Switching System Mainframe (8 card capacity)
964i-8X2MX P	re-built 964i w 2 ea 7KV 8 Ch. Cards and a Hipot/Cont Mux Card
964i-16X2MX F	Pre-built 964i w 4 ea 7KV 8 Ch. Cards and a Hipot/Cont Mux Card
964i-24X2MX F	Pre-built 964i w 6 ea 7KV 8 Ch. Cards and a Hipot/Cont Mux Card
LV3-8R	3KV Single (+) Input Bus 8 Outputs, Red Banana Jacks
LV3-8B	3KV Single - Input Bus 8 Outputs, Black Banana Jacks
LV3-8S	3KV (-) Bus Input 4 Outputs Blk, (+) Bus Input 4 Outputs Red
LV3-MX2	3KV Dual Input (HV/Cont) Single Output (+) Bus
HV7-8W	7KV Single (+) Input Bus 8 Outputs, White HV Terminals
HV7-8B	7KV Single (-) Input Bus 8 Outputs, Black HV Terminals
HV7-8S	7KV (-) Bus Input 4 Outputs Blk, (+) Bus Input 4 Outputs White
HV7-MX2	7KV Dual Input (HV/Cont) Single Output (+) Bus
HV10-8W	10KV Single Input Bus 8 Outputs, White HV Terminals
HV10-8B	10KV Single Input Bus 8 Outputs, Black HV Terminals
HV10-MX2	10KV Dual Input (HV/Cont) Single Output (+) Bus
HV15-8W	15KV Single Input Bus 8 Outputs, White HV Terminals
HV15-8B	15KV Single Input Bus 8 Outputs, Black HV Terminals
HV15-MX2	15KV Dual Input (HV/Cont) Single Output (+) Bus
GP-964	GPIB Interface Option
GP-1	GPIB Cable, 1 meter length
VICL-2	Replacement Vitrek Hipot Communication Cable 7ft
RM-1	Rack Mount Kit
HVC-MW	Additional Male HV Mating Connector, White
HVC-MB	Additional Male HV Mating Connector, Black
HVC-FW	Female HV Panel Mount Receptacle/Connector, White
HVC-FB	Female HV Panel Mount Receptacle/Connector, Black
TL-HVW	20KV Rated 18 AWG Test Lead 4ft , HVC-MW to Alligator Clip
TL-HVB	20KV Rated 18 AWG Test Lead 4ft , HVC-MB to Alligator Clip
HVW-20	Bulk 20KV Rated 18 AWG Test Lead Wire, price per ft
598-8012	Test Lead ASEM, #18 AWG WHT 48/HVC-MW/HVC-MW

Vitrek Corporation

12169 Kirkham Road, Poway, CA 92064 Ph 858.689.2755 Fax 858-689-2760 info@vitrek.com www.vitrek.com

Prices and specifications subject to change